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Abstract. Supercompact extender based forcings are used to
construct models with HOD cardinal structure different from those
of V . In particular, a model where all regular uncountable cardi-
nals are measurable in HOD is constructed.

1. Introduction

In [3] the following result was proved:

Theorem. Suppose κ < λ are cardinals such that cf(κ) = ω, λ is
inaccessible, and κ is a limit of λ-supercompact cardinals. Then there
is a forcing poset Q that adds no bounded subsets of κ, and if G is
Q-generic then:

• λ = (κ+)V [G].
• Every cardinal ≥ λ is preserved in V [G].
• For every x ⊆ κ with x ∈ V [G], (κ+)HOD{x} < λ.

The supercompact extender based Prikry forcing, developed by the
second author in [8], is applied to reduce largely the initial assumptions
of this theorem and to give a simpler proof. Namely, we show the
following:

Theorem 1. Suppose κ is a <λ-supercompact cardinal1, and λ is an
inaccessible cardinal above κ. Then there is a forcing poset Q that adds
no bounded subsets of κ, and if G is Q-generic then:

• λ = (κ+)V [G].
• Every cardinal ≥ λ is preserved in V [G].
• For every x ⊆ κ with x ∈ V [G], (κ+)HOD{x} < λ.
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• cfHOD{x} κ = ω

Actually, assuming the measurability (or supercompactness) of λ in
V , we obtain that (κ+)V [G] is measurable (or supercompact) in HOD{x}.

In [2], a model with the property (α+)HOD < α+, for every infinite
cardinal α was constructed. We extend this result, using the super-
compact extender based Magidor forcing of the second author [9], and
show the following:

Theorem 22. Assume there is a Mitchell increasing sequence of ex-
tenders ⟨Eξ | ξ < λ⟩ such that λ is measurable, and for each ξ < λ,
crit(jξ) = κ, Mξ ⊇ <λMξ, and Mξ ⊇ Vλ+2, where jξ : V → Ult(V,Eξ) ≃
Mξ is the natural embedding. Then there is a model of ZFC where all
regular uncountable cardinals are measurable in HOD.

The work [1] obtained results similar to our last theorem using iter-
ation of Radin forcing together with Cardinal collapsing.

This may be of some interest due to the following result of H. Woodin
[10]:

Theorem (The HOD dichotomy theorem). Suppose δ is an extendible
cardinal. Then exactly one of the following holds:

(1) For every singular cardinal γ > δ, γ is singular in HOD and γ+ =
(γ+)HOD

(2) Every regular cardinal greater than δ is measurable in HOD.

However, we do not have even inaccessibles in the model of the-
orem 2. It is possible to modify the construction in order to have
measurable cardinals (and bit more) in the model. We do not know
how to get supercompacts and it is very unlikely the method used will
allow model with supercompacts.

The structure of this work is as follows. In section 2 we give defini-
tions and claims about HOD and homogeneous forcing notions which
are well known. In section 3 we prove theorem 1. In section 4 we prove
theorem 2.

We assume knowledge of large cardinals and forcing. In particu-
lar this work depends on the supercompact extender based Prikry-
Magidor-Radin forcing.

2This result was presented at the Arctic Set Theory Worshop 2 in Kilpisjärvi,
Finland, February 2015.
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2. HOD background

Definition 2.1. LetM be a class. The class ODM contains the sets de-
finable using ordinals and sets from M , i.e., A ∈ ODM iff there is a for-
mula φ(x, x1, . . . , xk, y1, . . . , ym), ordinals β, α1, . . . , αk ∈ On, and sets
a1, . . . , am ∈ M , such thatA = {a ∈ Vβ | Vβ ⊨ φ(a, α1, . . . , αk, a1, . . . , am)}.

The class HODM contains the sets which are hereditarily in ODM ,
i.e., A ∈ HODM iff tc({A}) ⊆ HODM .

We write OD and HOD for OD∅ and HOD∅, respectively.

Note, if A ∈ OD is a set of ordinals then A ∈ HOD.
We will work in HOD of generic extensions, hence the relation be-

tween V [G] and HODV [G], where V [G] is a generic extension, will be
our main machinery.

Our main tool will be forcing notions which are homogeneous in some
sense. A forcing notion P is said to be cone homogeneous if for each
pair of conditions p0, p1 ∈ P there is a pair of conditions p∗0, p

∗
1 ∈ P

such that p∗0 ≤ p0, p
∗
1 ≤ p1, and P/p∗0 ≃ P/p∗1.

A forcing notion P is said to be weakly homogeneous if for each
pair of conditions p0, p1 ∈ P there is an automorphism π : P → P so
that π(p0) and p1 are compatible. It is evident a weakly homogeneous
forcing notion is cone homogeneous.

An automorphism π : P → P induces an automorphism on P -terms
by setting recursively π(⟨τ̇ , p⟩) = ⟨π(τ̇), π(p)⟩.

Note ground model terms are fixed by automorphisms, i.e., π(x̌) = x̌,
in particular for each ordinal α, π(α̌) = α̌.

An essential fact about a cone homogeneous forcing notion P is that
for each formula φ, either ⊩P φ(α1, . . . , αl) or ⊩P ¬φ(α1, . . . , αl). If in

addition the forcing P is ordinal definable then we get HODV [G] ⊆ V ,
where G is P -generic.

In [4] it was shown that an arbitrary iteration of weakly (cone) ho-
mogeneous forcing notions is weakly (cone) homogeneous under the
very mild assumption that the iterand is fixed by automorphisms. For
the sake of completeness, we show here a special case of this theorem,
which is enough for our purpose.

Theorem 2.2 (Special case of Dobrinen-Friedman [4]). Assume ⟨Pα, Q̇β |
α ≤ κ, β < κ⟩ is a backward Easton iteration such that for each β < κ,
⊩Pβ

“Q̇β is cone homogeneous” and for each p0, p1 ∈ Pβ and automor-

phism π : Pβ/p0 → Pβ/p1, we have ⊩Pβ/p0 “π−1(Q̇β) = Q̇β”. Then Pκ

is cone homogeneous.
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Proof. Fix two conditions p0, p1 ∈ Pκ. We will construct two conditions
p∗0 ≤ p0 and p∗1 ≤ p1 such that Pκ/p

∗
0 ≃ Pκ/p

∗
1, by which we will be

done. The construction is done by induction on α ≤ κ as follows.
Assume α = β + 1, p∗0↾β, p

∗
1↾β, and πβ : Pβ/p

∗
0↾β ≃ Pβ/p

∗
1↾β were

constructed. We know ⊩Pβ/p
∗
0↾β

“Q̇β = π−1
β (Q̇β) is cone homogeneous”.

Let ρβ : Q̇β → Q̇β be a function for which τ̇ [G] = ρβ(τ̇)[π
′′
βG] holds,

whenever G ⊆ Pβ is generic and τ̇ [G] ∈ Q̇[G]. If both p0(β) and p1(β)

are the maximal element of Q̇β then let p∗0(β) and p∗1(β) be the maximal

element of Q̇β and let σβ = id be the trivial automorphism of Q̇β. If

either p0(β) or p1(β) is not the maximal element of Q̇β then use the

the cone homogeneity of Q̇β to find Pβ-names p∗0(β), p
∗
1(β), and σ̇β,

such that p∗0↾β ⊩Pβ
“p∗0(β) ≤ p0(β)”, p

∗
1↾β ⊩Pβ

“p∗1(β) ≤ p1(β)”, and

σ̇β : Q̇β/p
∗
0(β) ≃ Q̇β/ρ

−1
β (p∗1(β)) is an automorphism. Whatever way

σ̇β was constructed define the automorphism πβ+1 by letting πβ+1(s) =
⟨πβ(s↾β), ρβ(σ̇β(s(β)))⟩, for each s ≤ p∗0↾β + 1.
Assume α is limit and for each β < α we have p∗0↾β ≤ p0↾β, p∗1↾β ≤

p1↾β, and πβ : Pβ/p
∗
0↾β ≃ Pβ/p

∗
1↾β is an automorphism such that

πβ↾Pβ′ = πβ′ , whenever β′ ≤ β. For each s ≤ p∗0↾α let πα(s) ∈ Pα be
the condition defined by setting for each β < α, πα(s)(β) = πβ+1(s↾β+
1)(β). □

The following claim is practically the successor case of the previous
one. It is useful when we will have automorphism of forcing notions
which are not necessarily cone homogeneous.

Claim 2.3. Assume P0 and P1 are forcing notions with π0 : P0 → P1

being an isomorphism. Let Q̇0 be a P0-name of a cone homogeneous
forcing notion such that ⊩P0 “Q̇0 = Q̇1”, where Q̇1 = π0(Q̇0).

Then for each pair 1 ∗ q̇0 ∈ P0 ∗ Q̇0 and 1 ∗ q̇1 ∈ P1 ∗ Q̇1 there
are stronger conditions 1 ∗ q̇∗0 ≤ 1 ∗ q̇0 and 1 ∗ q̇∗1 ≤ 1 ∗ q̇1 such that
P0 ∗ Q̇0/1 ∗ q̇∗0 ≃ P1 ∗ Q̇1/1 ∗ q̇∗1.
Proof. Note there is a function ρ taking P0-names to P1-names such
that q̇0[G0] = ρ(q̇0)[G1], where G0 ⊆ P0 is generic and G1 = π′′

0G0.
Set q̇′1 = ρ−1(q̇1). By the cone homogeneity of Q̇0 in V P0 there are

stronger conditions q̇∗0 ≤ q̇0 and q̇′∗1 ≤ q̇′1, for which there is (a name
of) an automorphism π1 : Q̇0/q̇

∗
0 → Q̇0/q̇

′∗
1 . Set q̇∗1 = ρ(q̇)′∗1 . Since

for generics G0, G1 as above we have Q̇0/q̇
′∗
1 [G0] = Q̇1/q̇

∗
1[G1] we get

π(p ∗ q̇) = π0(p) ∗ (ρ ◦ π1(q̇)) is the required automorphism. □

While the forcing notions we will use are cone homogeneous we will
deliberately break down some of their homogeneity. The relation be-
tween HODV [G] and V will be as follows.
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Claim 2.4. Assume P is an ordinal definable cone homogeneous forc-
ing notion. Let π : P → Q be a projection. Assume that for each
condition p ∈ P , ordinals α1, . . . , αl ∈ On, and formula φ, if p ⊩P

φ(α1, . . . , αl) then π(p) ⊩Q φ(α1, . . . , αl). Then HODV [G] ⊆ V [π(G)],
where π(G) is the upward closure of π′′G.

Proof. Assume ⊩P “Ȧ ⊆ On and Ȧ ∈ HOD”. Let G ⊆ P be generic.
Then in V [G] there are ordinals α1, . . . , αl, β such that for each α ∈ On,

α ∈ Ȧ[G] ⇐⇒ Vβ ⊨ φ(α, α1, . . . , αl).

Let Xα
0 ∪Xα

1 ⊆ P be a maximal antichain such that for each p ∈ Xα
0 ,

p ⊩ “Vβ ⊨ ¬φ(α, α1, . . . , αl)”,

and for each p ∈ Xα
1 ,

p ⊩ “Vβ ⊨ φ(α, α1, . . . , αl)”.

Let Ȧ′ be a Q-name defined by setting for each p ∈ Xα
0 ∪Xα

1 .

π(p) ⊩Q “α ∈ Ȧ′” ⇐⇒ p ⊩P “α ∈ Ȧ”.

Since π′′(Xα
0 ∪Xα

1 ) is predense in Q we get Ȧ′[π(G)] = Ȧ[G], by which
we are done. □

Let C(τ, µ) be the Cohen forcing for adding µ subsets to τ , i.e.,
C(τ, µ) = {f : a → 2 | a ⊆ µ, |a| < τ}. The following is well known.

Claim 2.5. C(τ, µ) is cone homogeneous.

Proof. Assume f, g ∈ C(τ, µ) are conditions. Choose stronger condi-
tions, f ∗ ≤ f and g∗ ≤ g, such that dom f ∗ = dom g∗ = dom f ∪dom g.
Define π : C(τ, µ)/f ∗ → C(τ, µ)/g∗ by setting π(f ′) = g∗ ∪ (f ′ \ f ∗) for
each f ′ ≤ f ∗. It is obvious π is an automorphism. □

The following is immediate from the previous claim and theorem 2.2.

Claim 2.6. The Easton product of Cohen forcing notions is cone ho-
mogeneous.

3. The cofinality ω case

Let us switch to the cone-homogeneity of the Extender Based Prikry
forcing. Extender based Prikry forcing was originally developed in
[5]. We use a revision of the forcing where the extender can witness
supercompactness. This was first developed in [8]. At the suggestion3

of the referee we add intuitive explanation of the extender based Prikry

3The suggestion was for a short intuitive explanation, really.
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forcing. We will do so by introducing definitions going gradually from
the Prikry forcing to the extender based Prikry forcing.

We begin with a definition of Prikry forcing which is more cumber-
some than the standard definition. When generalizing to the extender
base Prikry forcing this cumbersome definition becomes simpler than
the standard definition of the extender based forcing.

Assume j : V → M is an elementary embedding such that crit(j) =
κ, M ⊇ κM , and κ is its sole generator. Define the measure U by
letting for each A ⊆ κ,

A ∈ U ⇐⇒ κ ∈ j(A).

Recall that a condition in Prikry forcing is of the form ⟨t, A⟩, where
t ∈ <ωκ is a finite increasing sequence and A ∈ U . We can always
assume that for each ordinal ν ∈ A, ν > max t. The condition ⟨t, B⟩
is said to be a direct extension of the condition ⟨t, A⟩ (⟨t, B⟩ ≤∗ ⟨t, A⟩)
in this forcing if B ⊆ A. Let ν ∈ A be an ordinal. Then ⟨t, A⟩⟨ν⟩ =
⟨t⌢⟨ν⟩, A\(ν+1)⟩. We say the condition ⟨t, A⟩⟨ν⟩ is a 1-point extension
of ⟨t, A⟩. By recursion define the n+1-point extension of the condition
⟨t, A⟩ to be (⟨t, A⟩⟨ν0,...,νn−1⟩)⟨νn⟩. We say the condition ⟨s, B⟩ is stronger
than the condition ⟨t, A⟩ if there are ⟨ν0, . . . , νn−1⟩ ∈ <ωA such that
⟨s, B⟩ ≤∗ ⟨t, A⟩⟨ν0,...,νn−1⟩. This is clearly a valid definition of Prikry
forcing. If G is the generic object then letting tG =

⋃
{t | ⟨t, A⟩ ∈ G}

we get that tG is an ω-sequence cofinal in κ.
Let us define again Prikry forcing, increasing the level of cumber-

someness. Starting from the same assumption as above proceed as
follows. Define the measure U by letting for each A ⊆ {κ}κ,

A ∈ U ⇐⇒ {⟨j(κ), κ⟩} ∈ j(A).

Note a typical function ν ∈ A is of the form ν : {κ} → κ. Define
now a condition in Prikry forcing to be of the form ⟨f, A⟩, where f :
{κ} → <ωκ is a function such that f(ν) is a finite increasing sequence,
and A ∈ U . Note we can assume for each ν ∈ A, ν(κ) > max f(κ).
The condition ⟨f,B⟩ is said to be a direct extension of the condition
⟨f, A⟩ (⟨f,B⟩ ≤∗ ⟨f, A⟩) in this forcing is if B ⊆ A. Assume ⟨f, A⟩
is a condition and ν ∈ A is a function. Define the function f⟨ν⟩ by
letting f⟨ν⟩(κ) = f(κ) ⌢ ⟨ν(κ)⟩. Define the set of functions in A which
are above ν as A⟨ν⟩ = {µ ∈ A | µ(κ) > ν(κ)}. A 1-point extension
⟨f, A⟩⟨ν⟩ of ⟨f, A⟩ is defined to be ⟨f⟨ν⟩, A⟨ν⟩⟩. By recursion define the
n+1-point extension of the condition ⟨f, A⟩ to be (⟨f, A⟩⟨ν0,...,νn−1⟩)⟨νn⟩.
We say the condition ⟨g,B⟩ is stronger than the condition ⟨f, A⟩ if
there is ⟨ν0, . . . , νn−1⟩ ∈ <ωA such that ⟨g,B⟩ ≤∗ ⟨f, A⟩⟨ν0,...,νn−1⟩. This
is clearly a valid, if somewhat bizarre, definition of Prikry forcing. If
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we let G be the generic object and define the function fG : {κ} → ωκ
by setting fG(κ) =

⋃
{f(κ) | ⟨f, A⟩ ∈ G}, then fG(κ) is an ω-sequence

cofinal in κ.
Staying in the previous context, let us choose an ordinal α < j(κ).

There is a function F in the ground model such that j(F )(κ) = α. Then
F ′′fG(κ) is a sequence Prikry generic for the measure W generated by
α. We can, however, generalize somewhat the forcing so as to be able to
read directly the generic sequence corresponding to α from the generic
object. For this define the measure U by letting for each A ⊆ {κ,α}κ,

A ∈ U ⇐⇒ {⟨j(κ), κ⟩, ⟨j(α), α⟩} ∈ j(A).

Note a typical function ν ∈ A is of the form ν : {κ, α} → κ such that
ν(κ) < ν(α). Define now a condition in Prikry forcing to be of the form
⟨f, A⟩, where f : {κ, α} → <ωκ is a function such that both f(κ) and
f(α) are finite increasing sequences, and A ∈ U . Note we can assume
for each ν ∈ A, max f(κ) < ν(κ) and max f(α) < ν(α). The condition
⟨f,B⟩ is a direct extension of the condition ⟨f, A⟩ (⟨f,B⟩ ≤∗ ⟨f, A⟩)
in this forcing if B ⊆ A. Assume ⟨f, A⟩ is a condition and ν ∈ A is a
function. Define the function f⟨ν⟩ by setting

f⟨ν⟩(κ) = f(κ) ⌢ ⟨ν(κ)⟩

and

f⟨ν⟩(α) = f(α) ⌢ ⟨ν(α)⟩.

Set A⟨ν⟩ = {µ ∈ A | µ(κ) > ν(α)}. Then define the condition
⟨f, A⟩⟨ν⟩ to be ⟨f⟨ν⟩, A⟨ν⟩⟩. We say the condition ⟨f, A⟩⟨ν⟩ is a 1-point
extension of ⟨f, A⟩. By recursion define the n + 1-point extension of
the condition ⟨f, A⟩ to be (⟨f, A⟩⟨ν0,...,νn−1⟩)⟨νn⟩. We say the condition
⟨g,B⟩ is stronger than the condition ⟨f, A⟩ (⟨g,B⟩ ≤ ⟨f, A⟩) if there
is ⟨ν0, . . . , νn−1⟩ ∈ <ωA such that ⟨g,B⟩ ≤∗ ⟨f, A⟩⟨ν0,...,νn−1⟩. The above
is clearly a valid, if strange, definition of Prikry forcing. Letting G be
the generic object we define the function fG : {κ, α} → ωκ by setting

fG(κ) =
⋃

{f(κ) | ⟨f, A⟩ ∈ G}

and

fG(α) =
⋃

{f(α) | ⟨f, A⟩ ∈ G}.

Then both fG(κ) and fG(α) are ω-sequences cofinal in κ.
Of course, seeing the above one can immediately generalize to any

less than κ ordinals below j(κ), which still leaves us in the realm of
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Prikry forcing. Thus fix d ∈ <κj(κ). It is technically useful to assume
κ ∈ d. Define the measure U by letting for each A ⊆ dκ,

A ∈ U ⇐⇒ {⟨j(α), α⟩ | α ∈ d} ∈ j(A).

A typical function ν ∈ A is of the form ν : d → κ and for each
α, β ∈ d such that α < β we have ν(α) < ν(β). While it is not terribly
important now, it should be observed that we also have |ν| < ν(κ).
Define now a condition in Prikry forcing to be of the form ⟨f, A⟩, where
f : d → <ωκ is a function such that for each α ∈ d we have f(α) is
increasing, and A ∈ U . Note if ν ∈ A we can assume for that each
α ∈ d we have max f(α) < ν(α). The condition ⟨f,B⟩ is said to be a
direct extension of the condition ⟨f, A⟩ (⟨f,B⟩ ≤∗ ⟨f, A⟩) in this forcing
if B ⊆ A. Assume ⟨f, A⟩ is a condition and ν ∈ A. The function f⟨ν⟩
is the function defined by setting for each α ∈ d,

f⟨ν⟩(α) = f(α) ⌢ ⟨ν(α)⟩.

Set A⟨ν⟩ = {µ ∈ A | µ(κ) > ν(α) for each α ∈ d}. Then define the
condition ⟨f, A⟩⟨ν⟩ to be ⟨f⟨ν⟩, A⟨ν⟩⟩. We say the condition ⟨f, A⟩⟨ν⟩
is a 1-point extension of ⟨f, A⟩. By recursion define the n + 1-point
extension of the condition ⟨f, A⟩ to be (⟨f, A⟩⟨ν0,...,νn−1⟩)⟨νn⟩. We say the
condition ⟨g,B⟩ is stronger than the condition ⟨f, A⟩ (⟨g,B⟩ ≤ ⟨f, A⟩)
if there is ⟨ν0, . . . , νn−1⟩ ∈ <ωA such that ⟨g,B⟩ ≤∗ ⟨f, A⟩⟨ν0,...,νn−1⟩.
The above is still a valid definition of Prikry forcing. Letting G be the
generic object and defining the function fG : d → ωκ by setting for
each α ∈ d, fG(α) =

⋃
{f(α) | ⟨f, A⟩ ∈ G}, we get that for each α ∈ d,

fG(α) is an ω-sequence cofinal in κ. Note the function fG defined here
is found in the generic extension of the standard Prikry forcing.

In fact, one can use in the previous definition also sets d of size κ.
The usefulness of the ultrafilter U is more apparent in this case, when
one views a typical function in a measure one set. Thus fix d ∈ κj(κ).
It is technically useful to assume κ ∈ d. Define the measure U by
letting for each A ⊆

⋃
{d′κ | d′ ⊆ d, |d′| < κ},

A ∈ U ⇐⇒ {⟨j(α), α⟩ | α ∈ d} ∈ j(A).

A typical function ν ∈ A is of the form ν : dom ν → κ (note dom ν
and not d!), where dom ν ⊆ d, and for each α, β ∈ dom ν such that
α < β we have ν(α) < ν(β). Moreover, |dom ν| < ν(κ). Define now a
condition in Prikry forcing to be of the form ⟨f, A⟩, where f : d → <ωκ
is a function such that for each α ∈ d we have f(α) is a finite increasing
sequence, and A ∈ U . We can always assume that for each ν ∈ A we
have max f(α) < ν(α) for each α ∈ dom ν The condition ⟨f,B⟩ is said
to be a direct extension of the condition ⟨f, A⟩ (⟨f,B⟩ ≤∗ ⟨f, A⟩) in
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this forcing if B ⊆ A. Assume ⟨f, A⟩ is a condition and ν ∈ A is a
function. Define the function f⟨ν⟩ by setting for each α ∈ d,

f⟨ν⟩(α) =

{
f(α) ⌢ ⟨ν(α)⟩ α ∈ dom ν,

f(α) α /∈ dom ν.

Set A⟨ν⟩ = {µ ∈ A | µ(κ) > ν(α) for each α ∈ dom ν}. Then define
the condition ⟨f, A⟩⟨ν⟩ to be ⟨f⟨ν⟩, A⟨ν⟩⟩. We say the condition ⟨f, A⟩⟨ν⟩
is a 1-point extension of ⟨f, A⟩. By recursion define the n + 1-point
extension of the condition ⟨f, A⟩ to be (⟨f, A⟩⟨ν0,...,νn−1⟩)⟨νn⟩. We say
the condition ⟨g,B⟩ is stronger than the condition ⟨f, A⟩ if there is
⟨ν0, . . . , νn−1⟩ ∈ <ωA such that ⟨g,B⟩ ≤∗ ⟨f, A⟩⟨ν0,...,νn−1⟩. The above
is still a valid definition of Prikry forcing. Letting G be the generic
object and defining the function fG : d → ωκ by setting for each α ∈ d,
fG(α) =

⋃
{f(α) | ⟨f, A⟩ ∈ G, α ∈ dom f}, we get that for each α ∈ d,

fG(α) is an ω-sequence cofinal in κ. Defining the function fG as in the
previous paragraph we get κ cofinal ω-sequences, but still all of them
are generated by fG(κ).

Since the ultrapower M is closed only under κ-sequences, one cannot
enlarge d to be of size greater than κ while keeping the nice properties
of Prikry type forcing notions. However, we can use conditions with
different domains, thus adding sequence corresponding to each of the
ordinals below j(κ). The domain change, however, causes the forcing
to be non-isomorphic to Prikry forcing. Thus if d ∈ κj(κ) then define
the measure Ud by letting for each A ⊆

⋃
{d′κ | d′ ⊆ d, |d′| < κ},

A ∈ Ud ⇐⇒ {⟨j(α), α⟩ | α ∈ d} ∈ j(A).

Define now a condition in the forcing to be of the form ⟨f, A⟩, where
f : dom f → <ωκ is a function such that for each α ∈ dom f , f(α) is
a finite increasing sequence, dom f ∈ κj(κ), and A ∈ Udom f . If d ⊆ e
and A ∈ Ue then set A↾d = {ν↾d | ν ∈ A}. The condition ⟨g,B⟩ is said
to be a direct extension of the condition ⟨f, A⟩ (⟨f,B⟩ ≤∗ ⟨f, A⟩) in
this forcing if g ⊇ f and B↾ dom f ⊆ A. Note this definition of the
direct order is a major change from all previous definitions. In
fact the direct order is a Cohen forcing for adding j(κ) subsets
to κ+. Assume ⟨f, A⟩ is a condition and ν ∈ A is a function. The
function f⟨ν⟩ is defined by setting for each α ∈ dom f ,

f⟨ν⟩(α) =

{
f(α) ⌢ ⟨ν(α)⟩ α ∈ dom ν,

f(α) α /∈ dom ν.

Given a set A ∈ Ud set A⟨ν⟩ = {µ ∈ A | µ(κ) > ν(α) for each α ∈
dom ν}. Then define the condition ⟨f, A⟩⟨ν⟩ to be ⟨f⟨ν⟩, A⟨ν⟩⟩. We
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say the condition ⟨f, A⟩⟨ν⟩ is a 1-point extension of ⟨f, A⟩. By re-
cursion define the n + 1-point extension of the condition ⟨f, A⟩ to be
(⟨f, A⟩⟨ν0,...,νn−1⟩)⟨νn⟩. We say the condition ⟨g,B⟩ is stronger than the
condition ⟨f, A⟩ (⟨g,B⟩ ≤ ⟨f, A⟩) if there is ⟨ν0, . . . , νn−1⟩ ∈ <ωA such
that ⟨g,B⟩ ≤∗ ⟨f, A⟩⟨ν0,...,νn−1⟩. This forcing notion is no longer
Prikry forcing. Using the same definition of fG as before we get
j(κ) cofinal ω-sequence into κ. However, while each of the sequences
appears in a generic extension by Prikry forcing, the function fG itself
does not belong to a Prikry generic extension.

The point of the previous forcing is that nothing restricts us from
using it with elementary embeddings with many generators, thus we
get the extender based Prikry forcing. Thus assume j : V → M
is an elementary embedding such that crit(j) = κ, M ⊇ κM , and
κ < λ < j(κ) is a cardinal in V . Using the previous definition with
conditions ⟨f, A⟩ such that dom f ∈ κλ, we get that λ-many new ω-
sequences cofinal in κ appear in the generic extension, thus 2κ = κω ≥
λ. Working out the proof we get that no cardinals are collapsed, 2κ = λ,
and cf κ = ω.

The final generalization achieved so far, along the lines above, is to
begin with elementary embedding with even more closure properties,
i.e., j : V → M such that crit(j) = κ and M ⊇ <λM , where λ > κ
and then work out the definition above to use d of arbitrary size below
λ. This yields a generic extension in which cf κ = ω and 2κ blows
up to whatever cardinal the model M catches beginning with λ up to
j(κ). However, the cardinals above κ and below λ are collapsed in this
extension., which is to be expected when using a < λ-supercompact
cardinal.

Let E be an extender as in [8]. Let PE be the extender based Prikry
forcing derived from E. We show PE is cone homogeneous.

Claim 3.1. For each pair of conditions p0, p1 ∈ PE there are direct
extensions p∗0 ≤∗ p0 and p∗1 ≤∗ p1 such that PE/p

∗
0 ≃ PE/p

∗
1.

Proof. Set d = dom fp0 ∪ dom fp1 . Set f ∗
0 = fp0 ∪ {⟨α, ⟨⟩⟩ | α ∈

d \ dom fp0} and f ∗
1 = fp1 ∪ {⟨α, ⟨⟩⟩ | α ∈ d \ dom fp1}. Choose a

set A ⊆ π−1
d,dom fp0 (A

p0) ∩ π−1
d,dom fp1 (A

p1) so that both p∗0 = ⟨f ∗
0 , A⟩ and

p∗1 = ⟨f ∗
1 , A⟩ are conditions. Define π : PE/p

∗
0 → PE/p

∗
1 by setting

for each p ≤ p∗0, π(p) = ⟨fp∗1
⟨ν0,...,νn−1⟩ ∪ (fp↾(dom fp \ d)), Ap⟩, where

⟨ν0, . . . , νn−1⟩ ∈ <ωAp∗0 and p ≤∗ p∗0⟨ν0,...,νn−1⟩. We claim π is an iso-

morphism. Note the condition p and π(p) are mostly identical. The
condition π(p) can differ from p when α ∈ d and fπ(p)(α) differs from
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fp(α). Thus the one point which is not trivial is that π is order pre-
serving.

Assume p ≤ q ≤ p∗0. We show π(p) ≤ π(q). We need to show there
is ν⃗ ∈ <ωAπ(q) such that π(p) ≤∗ π(q)⟨ν⃗⟩. Choose ν⃗ ∈ Aq = Aπ(q) such
that p ≤∗ q⟨ν⃗⟩. For the measure one sets we get at once

Aπ(p)↾ dom f q = Ap↾ dom f q ⊆ Aq
⟨ν⃗⟩ = A

π(q)
⟨ν⃗⟩ .

For the functions we have the following. If α ∈ dom fπ(p) \ d then

fπ(p)(α) = fp(α) = f q(α) ⌢ ⟨ν⃗(α)⟩ = fπ(q)(α) ⌢ ⟨ν⃗(α)⟩ = fπ(q)⟨ν⃗⟩(α).

If α ∈ d then there is µ⃗ ∈ <ωAp∗0 = <ωAp∗1 such that q ≤∗ p∗0⟨µ⃗⟩, thus
p ≤∗ p∗0⟨µ⃗⌢ν⃗⟩, hence

fπ(p)(α) = fp∗
1⟨µ⃗⌢ν⃗⟩(α) = f

p∗1
⟨µ⃗⌢ν⃗⟩(α) =

f
π(q)
⟨ν⃗⟩ (α) = fπ(q)(α) ⌢ ⟨ν⃗(α)⟩ = fπ(q)⟨ν⃗⟩(α).

□

For a generic filter G ⊆ PE define the function fG by setting fG(α) =⋃
{fp(α) | p ∈ G,α ∈ dom fp}.
Let us define the Easton products we are going to work with. Let

A ⊆ On be a set of ordinals. Let Cχ,A be the Easton product of
the Cohen forcing notions yielding, in the generic extension, for each
ξ < supA,

2χ
+ξ+1

=

{
χ+ξ+3 ξ ∈ A,

χ+ξ+2 ξ /∈ A.

When forcing with Cχ,A we will choose χ to be large enough so as not to
interfere with our intended usage. Due to the (cone) homogeneity of PE,

the sequences forced by PE are not in HODV PE . We would like to break

the homogeneity of PE so as to have the Prikry sequence enter HODV PE .
We will achieve this by coding the Prikry sequence into the power set
function. We will want the Cohen forcing used to be stabilized by
reasonable automorphisms of PE. Let PE(κ) be Prikry forcing using
the measure E(κ). Define the function s : PE → PE(κ) by setting
s(p) = ⟨fp↾{κ}, Ap↾{κ}⟩, where Ap↾{κ} = {ν↾{κ} | ν ∈ Ap}. Note
PE(κ) ⊆ PE. Assume a pair of conditions p, q ∈ PE(κ) are compatible
in PE. I.e., there is a condition r ≤PE

p, q. Then s(r) ≤PE
p, q, hence

s(r) ≤PE(κ)
p, q. Hence a maximal antichain in PE(κ) is also a maximal

antichain in PE, thus the function s is a projection. Thus if G ⊆ PE is
generic then s′′G is PE(κ)-generic.
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Until the end of the section set P = PE ∗ Ċχ,ḟG(κ).

Claim 3.2. Assume ⟨p0, q̇0⟩, ⟨p1, q̇1⟩ ∈ P are conditions such that s(p0)
and s(p1) are compatible. Then there are extensions, ⟨p∗0, q̇∗0⟩ ≤ ⟨p0, q̇0⟩
and ⟨p∗1, q̇∗1⟩ ≤ ⟨p1, q̇1⟩, such that P/⟨p∗0, q̇∗0⟩ ≃ P/⟨p∗1, q̇∗1⟩.

Proof. Since s(p0) and s(p1) are compatible, we can choose conditions
p′0 ≤ p0 and p′1 ≤ p1 such that fp′0↾{κ} = fp′1↾{κ}. By claim 3.1 there
are direct extensions p∗0 ≤∗ p′0 and p∗1 ≤∗ p′1 such that π0 : PE/p

∗
0 ≃

PE/p
∗
1 is an automorphism. Since Cχ,fG(κ) = π(Cχ,fG(κ)), where G ⊆ PE

is generic, we are done by claim 2.3. □

The following is immediate from the previous claim.

Corollary 3.3. Assume α, α1, . . . , αn ∈ On and ⟨p, q⟩ ⊩P φ(α, α1, . . . , αn).
Then ⟨s(p), 1⟩ ⊩P φ(α, α1, . . . , αn).

Proof. In order to show ⟨s(p), 1⟩ ⊩P φ(α, α1, . . . , αn) we will show a
dense subset of conditions below ⟨s(p), 1⟩ forces φ(α, α1, . . . , αn). Let
⟨p0, q̇0⟩ ≤ ⟨s(p), 1⟩ be an arbitrary condition. By claim 3.2 there is
⟨p′0, q̇′0⟩ ≤ ⟨p0, q̇0⟩ and ⟨p′1, q̇′1⟩ ≤ ⟨p, q̇⟩ such that P/p′0 ∗ q̇′0 ≃ P/p′1 ∗ q̇′1.
Thus ⟨p′0, q̇′0⟩ ⊩P φ(α1, . . . , αn). □

The previous corollary together with claim 2.4 yields the following.

Corollary 3.4. Assume G ∗H is P-generic. Then cfV [G∗H] κ = ω and
fG(κ) ∈ HODV [G∗H] ⊆ V [s′′G].

We will get a special case of theorem 1 by invoking the last corollary
in a model of the form L[A].

Corollary 3.5. Assume V = L[A], where A ⊆ On is a set of ordi-
nals, and E is an extender witnessing κ is a <λ-supercompact cardi-
nal. There is a forcing notion R preserving the extender E such that
in V [I][G∗H], where I ∗G∗H is R ∗P-generic, κ+ = λ, cf κ = ω, and

HODV [I][G][H] = V [I][s′′G].

Proof. We will begin by defining the forcing notion R so that for an
R-generic filter I we will have HODV [I] = V [I].
Define by induction the forcing notions ⟨Rn | n ≤ ω⟩ and sets ⟨An |

n < ω⟩, as follows. Set R0 = 1 and A0 = A. For each n < ω define
Rn+1 as follows. In V [Gn], where Gn ⊆ Rn is generic over V , let Cn be
the forcing notion Cχn,An for a large enough χn. Let An+1 be Cn-generic

over V [Gn], i.e., An+1 is a code for An. Set Rn+1 = Rn ∗ Ċn, where Ċn

is an Rn-name for Cn. Let R be the inverse limit of ⟨Rn | n < ω⟩. Let
I ⊆ R be generic.
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Invoking corollary 3.4 inside V [I] and calculating HODV [I][G][H] we

get fG(κ) ∈ HODV [I][G][H] ⊆ V [I][s′′G]. For each n < ω, An ∈
HODV [I][G][H], thus HODV [I][G][H] ⊇ L[A][I][s′′G] = V [I][s′′G]. □

Hence we get:

Corollary 3.6. Assume λ is measurable and κ is <λ-supercompact.
Then there is a generic extension in which cfHOD κ = ω, and κ+ (of
the generic extension) is measurable in HOD.

In order to analyze HOD{a}, where a ⊆ κ, let us derive another line
of corollaries stemming from claim 3.2. The problem we face when
dealing with HOD{a} is an automorphism π of P might move ȧ, the
name of a. Thus we will need to fine tune the projection s.

First we recall the notion of a good pair from [9]. We say the pair
⟨N, f⟩ is a good pair if N ≺ Hχ is a κ-internally approachable ele-
mentary substructure, |N | < λ, and there is a sequence ⟨⟨Nξ, fξ⟩ |
ξ < κ⟩ such that ⟨Nξ | ξ < κ⟩ witnesses the κ-internal approacha-
bility of N , f =

⋃
{fξ | ξ < κ}, ⟨fξ | ξ < κ⟩ is a ≤∗-decreasing

continuous sequence in P∗
f , and for each ξ < κ, fξ ∈

⋂
{D ∈ Nξ |

D is a dense open subset of P∗
f}, fξ ⊆ Nξ+1, and fξ ∈ Nξ+1.

Set PN
E = {⟨f, A⟩ ∈ PE | dom f ⊆ N}. Define the function sN :

PE → PN
E by setting for each p ∈ PE, sN(p) = ⟨fp↾N,Ap↾N⟩. Note

PN
E ⊆ PE. Fix two conditions p, q ∈ PN

E . Assume they are compatible in
PE, i.e., there is a condition r ∈ PE such that r ≤PE

p, q. Thus there
are ν⃗ ∈ <ωAp and µ⃗ ∈ <ωAq such that r ≤∗

PE
p⟨ν⃗⟩, q⟨µ⃗⟩. Immediately we

get sN(r) ≤∗
PN
E
p⟨ν⃗⟩, q⟨µ⃗⟩. Hence a maximal antichain in PN

E is a maximal

antichain in PE, hence the function sN is a projection.

Corollary 3.7. Assume N ≺ Hχ is an elementary substructure such
that p∗ is an ⟨N,PE⟩-generic condition and ⟨N, fp∗⟩ is a good pair. Let
ȧ ∈ N be a PE-name such that ⊩PE

“ȧ ⊆ κ”. If α, α1, . . . , αn ∈
On, p ≤ p∗, and ⟨p, q̇⟩ ⊩P φ(α, α1, . . . , αn, ȧ), then ⟨sN(p), 1⟩ ⊩P
φ(α, α1, . . . , αn, ȧ).

Proof. In order to show ⟨sN(p), 1⟩ ⊩P φ(α, α1, . . . , αn, ȧ) we will show
a dense subset of conditions below ⟨sN(p), 1⟩ forces φ(α, α1, . . . , αn, ȧ).
Let ⟨p0, q̇0⟩ ≤ ⟨sN(p), 1⟩ be arbitrary condition. We can choose p1 ≤

p such that sN(p0) = sN(p1). By claim 3.1 there is p∗0 ≤∗ p0 and
p∗1 ≤∗ p1 such that PE/p

∗
0 ≃ PE/p

∗
1.

Recall that if r ≤ p∗, α < κ, and r ⊩PE
“α ∈ ȧ”, then p∗⟨ν0,...,νl−1⟩ ⊩

“α ∈ ȧ”, where ⟨ν0, . . . , νl−1⟩ ∈ <ωAp∗ is such that r ≤∗ p∗⟨ν0,...,νl−1⟩.
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Thus for each ⟨ν0, . . . , νl−1⟩ ∈ Ap∗0 = Ap∗1 , α < κ, and r ∈ PE/p
∗
0,

r ≤∗ p∗0⟨ν0,...,νl−1⟩ and r ⊩PE
“α ∈ ȧ” ⇐⇒

p⟨ν0,...,νl−1⟩↾dom fp ⊩PE
“α ∈ ȧ” ⇐⇒

π(r) ≤∗ p∗1⟨ν0,...,νl−1⟩ and π(r) ⊩PE
“α ∈ π(ȧ)”.

Thus p∗0 ⊩ “ȧ = π−1(ȧ)”. Use claim 3.2 to find stronger conditions
⟨p′0, q̇′0⟩ ≤ ⟨p∗0, q̇0⟩ and ⟨p′1, q̇′1⟩ ≤ ⟨p∗0, q̇⟩ such that π̃ : P/p′0 ∗ q̇′0 ≃
P/p′1 ∗ q̇′1 is an automorphism. Since ⟨p′1, q̇′1⟩ ⊩P φ(α1, . . . , αn, ȧ) we
get ⟨p′0, q̇′0⟩ ⊩P φ(α1, . . . , αn, π

−1(ȧ)). We are done since p′0 ⊩ “ȧ =
π−1(ȧ)”. □

Corollary 3.8. Assume G ∗H is P-generic, a ∈ V [G ∗H], and a ⊆ κ.

Then cfV [G∗H] κ = ω and fG(κ) ∈ HOD
V [G∗H]
{a} ⊆ V [s′′XG] for a set

X ⊆ domE such that |X| < λ.

We will get theorem 1 by beginning with a model where HOD ⊇
Vλ+2. For this let us define the following coding. Let A = ⟨Aα | α <
λ+3⟩ be an enumeration of all subsets of λ++. Let Cχ,A be the Easton
product of the Cohen forcing notions yielding, in the generic extension,
for each α < λ+3 and ξ < λ++,

2χ
+λ++·α+ξ+1

=

{
χλ++·α+ξ+3 ξ ∈ Aα,

χλ++·α+ξ+2 ξ /∈ Aα.

Corollary 3.9. Let E is an extender witnessing κ is a <λ-supercompact
cardinal. In V [I][G ∗H], where I ∗G ∗H is Cχ,A ∗P-generic, κ+ = λ,

and for each set a ⊆ κ, cfHOD
V [I][G∗H]
{a} κ = ω and λ is measurable in

HOD
V [I][G][H]
{a} .

Proof. Let U ∈ V be a measure on λ. Then U ∈ Vλ+2, hence U ∈
HODV [I], where I is Cχ,A-generic.

Working in V [I] let G ∗ H be P-generic. By corollary 3.8 there is

X ⊆ domE such that |X| < λ, X ∈ V [I], and fG(κ) ∈ HOD
V [I][G∗H]
{a} ⊆

V [I][s′′XG]. The filter s′′XG is s′′XPE-generic. Since |X| < λ we have
|s′′XPE| < λ, hence any measure (in V ) over λ trivially lifts to a measure

in V [sX(G)] over λ. In particular U lifts to ¯̄U , which is definable by
¯̄U = {B ∈ V [I][s′′XG]∩P(λ) | ∃A ∈ U B ⊇ A}. Since U ∈ HOD

V [I][G∗H]
{a}

we can define in HOD
V [I][G∗H]
{a} , Ū = {B ∈ HOD

V [I][G∗H]
{a} ∩ P(λ) | ∃A ∈

U B ⊇ A}. Since HOD
V [I][G∗H]
{a} ⊆ V [I][s′′XG] we necessarily have Ū ⊆

¯̄U . Thus Ū is a measure on λ in HOD
V [I][G∗H]
{a} . □
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4. The global result

In this section we prove theorem 2. The extender based Radin forc-
ing was originally developed in [7]. We use a generalization of the
forcing where the extenders can witness supercompactness. This was
developed in [9]. Since the introduction in the previous section was
very detailed, we will give here only our version of Radin forcing.

Let us begin with with defining the Magidor forcing [6] using two
measures. Assume U ′

0◁U ′
1 are two normal measures over κ. For each

i < 2 let ji : V → Mi ≃ Ult(V, U ′
i) be the natural elementary embed-

dings. Define the measure U0 by letting for each A ⊆ {κ}κ,

A ∈ U0 ⇐⇒ {⟨j0(κ), ⟨κ⟩⟩} ∈ j0(A).

Note a typical function ν ∈ A is of the form ν : {κ} → κ. Define the

measure U1 by letting for each A ⊆ {κ}Vκ,

A ∈ U1 ⇐⇒ {⟨j1(κ), ⟨κ, U0⟩⟩} ∈ j1(A).

A typical function ν ∈ A is of the form ν : {κ} → Vκ, where ν(κ) =
⟨ξ, µ⟩ and µ is a measure over ξ. Define by recursion the conditions and
ordering of the forcing notion as follows. A basic condition in Magidor
forcing is of the form ⟨f, A⟩, where A ∈ U0 ∩ U1 and f : {κ} → Vκ is
a function such that f(κ) = ⟨⟨ξ0, µ0⟩, . . . , ⟨ξk−1, µk−1⟩, ⟨ξk⟩, . . . , ⟨ξn−1⟩⟩,
where ξ0 < · · · < ξn−1 < κ and for each i < k, µi is a measure over
ξi. A sequence of the form ⟨⟨ξ0, µ0⟩, . . . , ⟨ξk−1, µk−1⟩, ⟨ξk⟩, . . . , ⟨ξn−1⟩⟩ is
said to be o-decreasing since we consider o(⟨ξi, µi⟩) = 1 and o(⟨ξi⟩) = 0.
Assume ⟨f, A⟩ is a condition and ν ∈ A is a function. We define the
functions f⟨ν⟩↓ and f⟨ν⟩↑ as follows. Assume o(ν) = 0. In this case
we work essentialy as in the Prikry forcing case. We let f⟨ν⟩↓ = ∅.
Define the function f⟨ν⟩↑ by letting f⟨ν⟩↑(κ) = f(κ) ⌢ ⟨ν(κ)⟩. Note
that since o(ν) = 0 the sequence f(κ) ⌢ ⟨ν(κ)⟩ is o-decreasing if
f(κ) is o-decreasing. Assume ν ∈ A is a function such that
o(ν) = 1. In this case we define two functions f⟨ν⟩↑ and f⟨ν⟩↓. If
we would have let f⟨ν⟩↑(κ) = f(ν) ⌢ ⟨ν(κ)⟩ then we might have ended
with a non o-decreasing sequence. Thus we cut the possible prob-
lematic tail of f(κ) as follows. Set l = max{l′ | o(fl′(κ)) = 1} + 1.
If the set over which the max above is operating is empty then set
l = 0. Then let f⟨ν⟩↑(κ) = f(κ)↾l ⌢ ⟨ν(κ)⟩. Whatever is the value
of o(ν) let A⟨ν⟩↑ = {τ ∈ A | τ̊(κ) > ν̊(κ)}. The tail removed from
f(κ) is ‘pushed down’ by letting f⟨ν⟩↓ : {ν̊(κ)} → ν̊ be a function such
that f⟨ν⟩↓(̊ν) = f(κ) \ l, where ν̊ is ξ if ν = ⟨ξ, µ⟩. Together with
the ‘pushed down function’ we set the pushed down part of A to be



16 MOTI GITIK AND CARMI MERIMOVICH

A⟨ν⟩↓ = {τ ↓ ν | τ ∈ A, o(τ) = 0, τ̊ < ν̊}, where τ ↓ ν(ξ) = τ(ξ). Fi-
nally set ⟨f, A⟩⟨ν⟩↑ = ⟨f⟨ν⟩↑, A⟨ν⟩↑⟩ and ⟨f, A⟩⟨ν⟩↓ = ⟨f⟨ν⟩↓, A⟨ν⟩↓⟩. Note
⟨f, A⟩⟨ν⟩↓ is a condition in a Prikry forcing. A 1-point extension of
⟨f, A⟩ is ⟨f, A⟩⟨ν⟩ = ⟨f, A⟩⟨ν⟩↓ ⌢ ⟨f, A⟩⟨ν⟩↑.
Assume G is generic with ⟨f ∗, A∗⟩ ∈ G, where f ∗(κ) = ⟨⟩. Letting

fG(κ) =
⋃
{f(κ) | s ⌢ ⟨f, A⟩ ∈ G} and f̊G(κ) = ⟨̊ν | ν ∈ fG(κ)⟩

we get that f̊G(κ) is an ω2 sequence cofinal in κ. Moreover if s ⌢

⟨g,B⟩ ⌢ t ⌢ ⟨f, A⟩ ∈ G then setting gG(κ) =
⋃
{⟨g′, B′⟩ ≤ ⟨g,B⟩ |

s′ ⌢ ⟨g′, B′⟩⌢ t′ ⌢ ⟨f, A⟩ ∈ G} and g̊G(τ) = ⟨̊ν | ν ∈ gG(κ)⟩. Then g̊(τ)
is an ω-sequence cofinal in dom g.
Let us switch to the extender based Magidor forcing using two ex-

tenders. Assume E ′
0◁E ′

1 are two extenders over κ. For each i < 2 let
ji : V → Mi ≃ Ult(V,E ′

i) be the natural elementary embeddings.
For each d ∈ κj(κ) such that κ ∈ d define the measure E0(d) as

follows. For each A ⊆
⋃
{d′κ | d′ ⊆ d, |d′| < κ},

A ∈ E0(d) ⇐⇒ {⟨j0(α), ⟨α⟩⟩ | α ∈ d} ∈ j0(A).

A typical function ν ∈ A is of the form ν : dom ν → κ where dom ν ⊆ d,
and for each α, β ∈ dom ν such that α < β we have ν̊(α) < ν̊(β).
Moreover, |dom ν| < ν(κ). For each d ∈ κj1(κ) such that κ ∈ d define

the ultrafilter E1(d) as follows. For each A ⊆
⋃
{d′Vκ | d′ ⊆ d, |d′| < κ},

A ∈ E1(d) ⇐⇒ {⟨j1(α), ⟨α,E0⟩⟩ | α ∈ d} ∈ j1(A).

A typical function ν ∈ A is of the form ν : dom ν → Vκ where dom ν ⊆
d, and for each α, β ∈ dom ν such that α < β we have ν̊(α) < ν̊(β).
Moreover, |dom ν| < ν(κ). Define by recursion the conditions and order
on the forcing notion as follows. A basic condition in the extender based
Magidor forcing is of the form ⟨f, A⟩, where f : d → <ωVκ is a function
such that for each α ∈ d we have f(α) is a finite o-decreasing sequence,
and A ∈ E0(d) ∩ E1(d). We can always assume that for each ν ∈ A
we have max f(α) < ν̊(α) for each α ∈ dom ν. Assume ⟨f, A⟩ is a
condition and ν ∈ A is a function. We define the functions f⟨ν⟩↓ and
f⟨ν⟩↑, employing the same idea used on f(κ) to each of the f(α)’s, as
follows. Assume o(ν) = 0. Let f⟨ν⟩↓ = ∅. Define the function f⟨ν⟩↑ by
setting for each α ∈ d,

f⟨ν⟩↑(α) =

{
f(α) ⌢ ⟨ν(α)⟩ α ∈ dom ν,

f(α) α /∈ dom ν.
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Assume o(ν) = 1. Define the function f⟨ν⟩↑ by setting for each α ∈ d,

f⟨ν⟩↑(α) =

{
f(α)↾lα ⌢ ⟨ν(α)⟩ α ∈ dom ν,

f(α) α /∈ dom ν,

where

lα =

{
max{l′ | o(fl′(α)) = 1}+ 1 ∃l o(fl(α)) = 1,

0 Otherwise.

Let f⟨ν⟩↓ : ran ν̊ → Vν̊(κ) be the function defined by setting for each
α ∈ dom ν, f⟨̊ν(α)⟩ = f(α) \ lα. Set A⟨ν⟩↑ = {τ ∈ A | τ̊(κ) >
ν̊(α) for each α ∈ dom ν}. If o(ν) = 0 then set A⟨ν⟩↓ = ⟨⟩. If o(ν) = 1
then set A⟨ν⟩↓ = {τ ↓ ν | τ ∈ A, o(τ) = 0, dom τ ⊆ dom ν, τ̊(α) <
ν̊(κ) for each α ∈ dom τ}, where τ ↓ ν : ran τ̊ → ν̊(κ) defined by set-
ting for each α ∈ dom τ , τ ↓ ν (̊ν(α)) = τ(α). Then define ⟨f, A⟩⟨ν⟩↑
and ⟨f, A⟩⟨ν⟩↑ to be ⟨f⟨ν⟩↑, A⟨ν⟩↑⟩ and ⟨f⟨ν⟩↓, A⟨ν⟩↓⟩, respectively. We
say the condition s′ ⌢ ⟨f ′, A′⟩ is stronger than the condition s ⌢ ⟨f, A⟩
(s′ ⌢ ⟨f ′, A′⟩ ≤ s ⌢ ⟨f, A⟩), if s′ ≤ s and ⟨f ′, A′⟩ ≤∗ ⟨f, A⟩⟨ν⃗⟩.
Assume G is generic with ⟨f ∗, A∗⟩ ∈ G, where f(κ) = ⟨⟩. Letting

fG(α) =
⋃
{f(α) | s ⌢ ⟨f, A⟩ ∈ G} and f̊(α) = ⟨̊ν | ν ∈ fG(α)⟩ we get

that f̊(α) is an ω2 sequence cofinal in κ. Moreover if s ⌢ ⟨g,B⟩ ⌢ t ⌢

⟨f, A⟩ ∈ G then setting gG(τ) =
⋃
{⟨g′, B′⟩ ≤ ⟨g,B⟩ | s′ ⌢ ⟨g′, B′⟩ ⌢

t′ ⌢ ⟨f, A⟩ ∈ G} and g̊G(τ) = ⟨̊ν | ν ∈ gG(τ)⟩. Then g̊(τ) is an ω-
sequence cofinal in τ . Note there are |j1(κ)| new ω2-sequences cofinal
into κ. For each of the reflections down we get the reflected amount of
ω-sequences. E.g., if |j0(κ)| = κ+3 then there are τ+3

n new ω-sequences
cofinal in τn.
Letting G be the generic object and defining the function fG : d →

ωκ by setting for each α ∈ d, fG(α) =
⋃
{f(α) | ⟨f, A⟩ ∈ G, α ∈

dom f}, we get that for each α ∈ d, fG(α) is an ω-sequence cofinal
in κ. Defining the function fG as in the previous paragraph we get κ
cofinal ω-sequences, but still all of them are generated by fG(κ).
Since the ultrapower M is closed only under κ-sequences, one cannot

enlarge d to be of size greater than κ while keeping the nice properties
of Prikry type forcing notions. However, we can use conditions with
different domains, thus adding sequence corresponding to each of the
ordinals below j(κ). The domain change, however, causes the forcing
to be non-isomorphic to Prikry forcing. Thus if d ∈ κj(κ) then define
the measure Ud by letting for each A ⊆

⋃
{d′κ | d′ ⊆ d},

A ∈ Ud ⇐⇒ {⟨j(α), α⟩ | α ∈ d} ∈ j(A).
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Define now a condition in the forcing to be of the form ⟨f, A⟩, where
f : dom f → <ωκ is a function such that for each α ∈ dom f , f(α) is
a finite increasing sequence, dom f ∈ κj(κ), and A ∈ Udom f . If d ⊆ e
and A ∈ Ue then set A↾d = {ν↾d | ν ∈ A}. The condition ⟨g,B⟩ is said
to be a direct extension of the condition ⟨f, A⟩ (⟨f,B⟩ ≤∗ ⟨f, A⟩) in
this forcing if g ⊇ f and B↾ dom f ⊆ A. Note this definition of the
direct order is a major change from all previous definitions. In
fact the direct order is a Cohen forcing for adding j(κ) subsets
to κ+. Assume ⟨f, A⟩ is a condition and ν ∈ A is a function. The
function f⟨ν⟩ is defined by setting for each α ∈ dom f ,

f⟨ν⟩(α) =

{
f(α) ⌢ ⟨ν(α)⟩ α ∈ dom ν,

f(α) α /∈ dom ν.

Given a set A ∈ Ud set A⟨ν⟩ = {µ ∈ A | µ(κ) > ν(α) for each α ∈
dom ν}. Then define the condition ⟨f, A⟩⟨ν⟩ to be ⟨f⟨ν⟩, A⟨ν⟩⟩. We
say the condition ⟨f, A⟩⟨ν⟩ is a 1-point extension of ⟨f, A⟩. By re-
cursion define the n + 1-point extension of the condition ⟨f, A⟩ to be
(⟨f, A⟩⟨ν0,...,νn−1⟩)⟨νn⟩. We say the condition ⟨g,B⟩ is stronger than the
condition ⟨f, A⟩ (⟨g,B⟩ ≤ ⟨f, A⟩) if there is ⟨ν0, . . . , νn−1⟩ ∈ <ωA such
that ⟨g,B⟩ ≤∗ ⟨f, A⟩⟨ν0,...,νn−1⟩. This forcing notion is no longer
Prikry forcing. Using the same definition of fG as before we get
j(κ) cofinal ω-sequence into κ. However, while each of the sequences
appears in a generic extension by Prikry forcing, the function fG itself
does not below to a Prikry generic extension.

The point of the previous forcing is that nothing restricts us from
using it with elementary embeddings with many generators, thus we
get the extender based Prikry forcing. Thus assume j : V → M
is an elementary embedding such that crit(j) = κ, M ⊇ κM , and
κ < λ < j(κ) is a cardinal in V . Using the previous definition with
conditions ⟨f, A⟩ such that dom f ∈ κλ, we get that λ new ω-sequences
cofinal in κ appear in the generic extension, thus 2κ = κω ≥ λ. Working
out the proof we get that no cardinals are collapsed, 2κ = λ, and
cf κ = ω.

The final generalization achieved so far is to begin with elementary
embedding with even more closure properties, i.e., j : V → M such
that crit(j) = κ and M ⊇ <λM , where λ > κ and then work out the
definition above to use d of arbitrary size below λ. This yields a generic
extension in which cf κ = ω and 2κ blows up to whatever cardinal the
model M catches beginning with λ up to j(κ). However, the cardinals
above κ and below λ are collapsed in this extension.
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Thus throughout this section assume E⃗ = ⟨Eξ | ξ < λ⟩ is a Mitchell
increasing sequence of extenders such that λ is measurable, and for
each ξ < λ, crit(jξ) = κ, Mξ ⊇ <λMξ, and Mξ ⊇ Vλ+2, where jξ : V →
Ult(V,Eξ) ≃ Mξ is the natural embedding. (We demand Mξ ⊇ Vλ+2

since we want λ to be measurable in all ultrapowers, not only in V ).

Let PE⃗ be the supercompact extender based Radin forcing using E⃗.
(see [9]).

Let us recall the cardinal structure in V P
E⃗ . κ remains an inaccessible

cardinal, hence (Vκ)
V

P
E⃗ is a model of ZFC. while λ remains a cardinal,

the cardinals between κ and λ are collapsed. Both κ and λ are reflected
down using the different extenders. Let τκ be reflection of κ which a
limit cardinal in V P

E⃗ . Let τλ be the matching reflection of λ. Then τλ
is preserved while the V -cardinals between τκ and τλ are collapsed.
Let us deal with the homogeneity of the Extender Based Radin forc-

ing.

Lemma 4.1. For a pair of conditions p0, p1 ∈ P∗
E⃗

there are direct

extensions p∗0 ≤∗ p0 and p∗1 ≤∗ p1 such that PE⃗/p
∗
0 ≃ PE⃗/p

∗
1.

Proof. Set d = dom fp0 ∪ dom fp1 . Set f ∗
0 = fp0 ∪ {⟨α, ⟨⟩⟩ | α ∈

d \dom fp0} and f ∗
1 = fp1 ∪{⟨α, ⟨⟩⟩ | α ∈ d \dom fp1}. Choose a set T

so that p∗0 = ⟨f ∗
0 , T ⟩ and p∗1 = ⟨f ∗

1 , T ⟩ are conditions, T ↾ dom fp0 ⊆ T p0

and T ↾ dom fp1 ⊆ T p1 . Define the isomorphism π : PE⃗/p
∗
0 → PE⃗/p

∗
1 as

follows. Thus assume p0 ≤ p∗0 . By the definition of the order there is
⟨ν0, . . . , νn−1⟩ ∈ <ωT p∗0 such that p0 ≤∗ p∗0⟨ν0,...,νn−1⟩. I.e., p

0 = p00
⌢ · · ·⌢

p0n, where p0i ≤∗ p∗0⟨ν0,...,νi−1⟩↑⟨νi⟩↓ for each i < n, and p0n ≤∗ p∗0⟨ν0,...,νn⟩↑.

Consider the condition p∗1⟨ν0,...,νn−1⟩ = p∗1,0
⌢ · · · ⌢ p∗1,n. Note dom fp0i ⊇

dom fp∗

1,i. Let p
1
i = ⟨f 1

i , T
p0i ⟩, where f 1

i = fp∗1,i∪fp0i ↾(dom fp0i \dom fp∗1,i).

Finally set π(p0) = p10
⌢ · · · ⌢ p1n. Let us show the function π is order

preserving. Fix q ≤ p ≤ p∗0. We will show π(q) ≤ π(p).
Since p ≤ p∗0 there is ⟨ν0, . . . , νn−1⟩ ∈ <ωT p∗0 such that p = p0

⌢ · · ·⌢
pn, where pi ≤∗ p∗0⟨ν0,...,νi−1⟩↑⟨νi⟩↓ for each i < n, and pn ≤∗ p∗0⟨ν0,...,νn−1⟩↑.

Since q ≤ p∗0 there is ⟨µ0, . . . , µm−1⟩ ∈ <ωT p∗0 such that q = q0
⌢ · · ·⌢qm,

where qi ≤∗ p∗0⟨µ0,...,µi−1⟩↑⟨µi⟩↓ for each i < m, and qm ≤∗ p∗0⟨µ0,...,νm−1⟩↑.
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Thus π(p) = p′ = p′0
⌢ · · · ⌢ p′n and π(q) = q′ = q′0

⌢ · · · ⌢ q′m, where

fp′i = f
p∗
0⟨ν0,...,νi−1⟩↑⟨νi⟩↓ ∪ fpi↾(dom fpi \ dom fp∗0,i) for each i < n,

fp′n = f
p∗
0⟨ν0,...,νn−1⟩↑ ∪ fpn↾(dom fpn \ dom fp∗0),

T p′i = T pi for each i ≤ n,

f q′i = f
p∗
0⟨µ0,...,µi−1⟩↑⟨µi⟩↓ ∪ f qi↾(dom fpi \ dom fp∗0,i) for each i < m,

f q′m = f
p∗
0⟨ν0,...,νm−1⟩↑ ∪ f qm↾(dom f qn \ dom fp∗0),

and

T q′i = T qi for each i ≤ m.

Since q ≤ p there k < ω such that q0
⌢ · · · ⌢ qk ≤ p0. Thus there

is ⟨τ0, . . . , τk−1⟩ ∈ <ωT p0 such that q0
⌢ · · · ⌢ qk ≤∗ p0⟨τ0,...,τk−1⟩. I.e.,

qi ≤∗ p0⟨τ0,...,τi−1⟩↑⟨τi⟩↓ for each i < k, and qk ≤∗ p0⟨τ0,...,τk−1⟩↑. Not-
ing that p∗0⟨µ0,...,µi−1⟩↑⟨µi⟩↓ = p∗0⟨ν0⟩↓⟨τ0,...,τi−1⟩↑⟨τi⟩↓ for each i < k, and

p∗0⟨µ0,...,µk−1⟩↑ = p∗0⟨ν0⟩↓⟨τ0,...,τk−1⟩↑, we conclude that q′0
⌢ · · · ⌢ q′k ≤∗

p′0⟨τ0,...,τk−1⟩, hence q′0
⌢ · · · ⌢ q′k ≤ p′0.

Proceeding as above for each pi, (e.g., there is k1 ≤ ω such that
qk+1

⌢ · · · ⌢ qk1 ≤ p1) we get that q′ ≤ p′. □

Recall that for a condition p = p0
⌢ · · · ⌢ pn we have PE⃗/p ≃

Pe⃗0/p0 · · · ⌢ Pe⃗n/pn, where pi ∈ P∗
e⃗i
and e⃗n = E⃗. Thus the following is

an immediate corollary of the above lemma by recursion.

Corollary 4.2. Assume p0, p1 ∈ PE⃗ are conditions such that p0, p1 ∈∏
0≤i≤n P

∗
e⃗i
. Then there are direct extensions p0∗ ≤∗ p0 and p1∗ ≤∗ p1

such that PE⃗/p
0∗ ≃ PE⃗/p

1∗.

For a condition p ∈ P∗
E⃗

define its projection s(p) to the normal

measure by setting s(p) = ⟨fp↾{κ}, T p↾{κ}⟩. Define by recursion the
projection of arbitrary condition p = p0

⌢ · · · ⌢ pn ∈ PE⃗ by setting
s(p) = s(p0

⌢ · · · ⌢ pn−1)
⌢ s(pn). It is obvious s′′PE⃗ is the Radin

forcing using the measures ⟨Eξ(κ) | ξ < o(E⃗)⟩. Moreover, if G is
PE⃗-generic then s′′G is s′′PE⃗-generic.

Let G be PE⃗-generic. Work in V [G]. Let ⟨κα | α < κ⟩ be the
increasing enumeration of fG(κ). Define the sequence ⟨µα, Uα | α < κ⟩
by setting for each α < κ,

µα =

{
κ+
α α is limit,

κα α is successor.
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Note: If α is limit, then µα = κ+
α is measurable in V since it is a

reflection of λ being measurable in one of the V -ultrapowers. On the
other hand, if α is successor then µα = κα is measurable in V since
E0 concentrates on measurables. Thus for each α < κ we can choose
Uα ∈ V which is a measure in V over µα. Define the backward Easton
iteration ⟨Pα, Q̇β | α ≤ κ, β < κ⟩ by setting for each α < κ, Q̇α =
Col(µα, <κα+1). By theorem 2.2 the iteration Pκ is cone homogeneous.
Let H ⊆ Pκ be generic.
Working in V [G ∗ H] we want to pull into the HOD of a generic

extension the measures Uα’s. Define the backward Easton iteration
⟨Rα, Ṡβ | α ≤ κ, β < κ⟩ by setting for each β < κ, Ṡβ = Cχβ ,Aβ

, where,

Aβ = {A ∈ V | A ⊆ (µ++
β )V } and supγ<β χγ < χβ < κ. By theorem 2.2

Rκ is cone homogeneous.
One final definition is in order before the following claim. If p ∈ P∗

E⃗

then set κ(p) = ran fp(κ). If p = p0
⌢ · · · ⌢ pn ∈ PE⃗ then set by

recursion κ(p) = κ(p0
⌢ · · · ⌢ pn−1)

⌢ κ(pn). Note κ(p) is the subset of
fG(κ) decided by the condition p.

Claim 4.3. Let P = PE⃗ ∗ Ṗκ ∗ Ṙκ. Assume ⟨p0, q̇0, q̇0⟩, ⟨p1, q̇1, ṙ1⟩ ∈ P
are conditions such that s(p0) and s(p1) are compatible. Then there are
stronger conditions, ⟨p∗0, q̇∗0, ṙ∗0⟩ ≤ ⟨p0, q̇0, ṙ0⟩ and ⟨p∗1, q̇∗1, q̇∗1⟩ ≤ ⟨p1, q̇1, ṙ1⟩,
such that P/⟨p∗0, q̇∗0, ṙ∗0⟩ ≃ P/⟨p∗1, q̇∗1, ṙ∗1⟩.

Proof. Since s(p0) and s(p1) are compatible there are stronger condi-
tions p′0 ≤ p0 and p′1 ≤ p1 and Mitchell increasing sequences {e⃗i | i ≤ k}
such that p′0, p

′
1 ∈

∏
i≤k Pe⃗i and κ(p′0) = κ(p′1). By the previous corol-

lary there are direct extensions p∗0 ≤∗ p′0 and p∗1 ≤∗ p′1 such that
π : PE⃗/p

∗
0 ≃ PE⃗/p

∗
1. Most importantly we have π(Ṗκ ∗ Q̇κ) = Ṗκ ∗ Q̇κ

is cone homogeneous. Thus by claim 2.3 we are done. □

Corollary 4.4. If ⟨p, q̇, ṙ⟩ ⊩P φ(α1, . . . , αl), then ⟨s(p), 1, 1⟩ ⊩P φ(α1, . . . , αl).

Proof. We will prove a dense subset of conditions below ⟨s(p), 1, 1⟩ force
φ(α0, . . . , αl). Assume ⟨p0, q̇0, ṙ0⟩ ≤ ⟨s(p), 1, 1⟩. Trivially s(p0) and
s(p) are compatible, hence by the previous corollary there are stronger
conditions ⟨p0∗, q̇0∗, ṙ0∗⟩ ≤ ⟨p0, q̇0, ṙ0⟩ and ⟨p1∗, q̇1∗, ṙ1∗⟩ ≤ ⟨p, q̇, ṙ⟩ such
that P/⟨p0∗, q̇0∗, ṙ0∗⟩ ≃ P/⟨p1∗, q̇1∗, ṙ1∗⟩. Necessarily ⟨p0∗, q̇0∗, ṙ0∗⟩ ⊩P
φ(α0, . . . , αl). □

Letting I be Rκ-generic over V [G][H] we get the following from the
previous corollary together with claim 2.4.

Corollary 4.5. HODV [G][H][I] ⊆ V [s′′G].

Claim 4.6. In V
V [G][H][I]
κ all regulars above κ0 are measurable in HODV

V [G][H][I]
κ .
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Proof. Since the regulars in the range [κ0, κ) are {µα | α < κ}, we will
be done by showing for each α < κ the measure Uα (in V ) lifts to a

measure in HODV
V [G][H][I]
κ . In V , µα is measurable. The set s′′PE⃗ is the

plain Radin forcing, hence any measure in V over µα lifts trivially to
a measure on µα in V [s′′G]. In particular the measure Uα in V lifts to

the measure ¯̄Uα in V [s′′G], which is definable by ¯̄Uα = {B ∈ V [s′′G] |
∃A ∈ Uα A ⊆ B ⊆ µα}.

Since HODV
V [G][H][I]
κ ⊇ V(µ++

α )V
we get Uα ∈ HODV

V [G][H][I]
κ ⊆ HODV [G][H][I] ⊆

V [s′′G]. Let Ūα = {B ∈ HODV
V [G][H][I]
κ | ∃A ∈ Uα A ⊆ B ⊆ µα}. Then

Ūα ∈ HODV
V [G][H][I]
κ and Ūα ⊆ ¯̄Uα. Necessarily Ūα is a measure on

µα. □

We get theorem 2 by forcing in V [G][H][I] with Col(ω,<κ0).
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