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Abstract. We define the extender based Magidor-Radin forcing notion from

a Mitchell increasing sequence of extenders. We prove the basic properties of

this forcing.

1. Introduction

The extender based Radin forcing was defined in [5]. It generalizes Radin forcing
[9] in the same way as the extender based Prikry forcing notion [2] generalizes Prikry
forcing [8]. In [5] the existence of a large enough extender is assumed and a sequence
of extenders is generated from it recursively, very much like the way a measure
sequence is generated recursively from an elementary embedding in [9] and [1]. In
the current work instead of assuming the existence of ‘a large extender above them
all’, we assume the existence of a Mitchell increasing sequence of extenders, and
work directly from it. This generalizes [4] where a coherent sequence of extenders
was used to defined the extender based Magidor forcing. This, in turn, generalized
[7], where a presentation of Radin forcing using a coherent sequence of measuers is
given. In some sense the current work is the top-down version of the forcing notion
presented in [3].

The general theme of the forcing notion we present is as follows. Given a Mithcell
increasing extender sequence, 2κ is controlled by the size of the extenders, the
cofinality of κ is controlled by the length of the sequence, and a club is added to κ
so that the power and cofinality of cardinals in the club is controlled by reflections
of the extender sequence. In the generic extension κ can become singular, can
remain regular, or measurable.

Let us show a typical example. Assume that 〈Eξ | ξ < o(Ē)〉 is a Mitchell
increasing sequence of extenders of length o(Ē), and let jξ be the corresponding
natural embeddings. Furthermore assume that for each ξ < o(Ē), |jξ(κ)| ≥ κ+3.
Then there is a generic extension preserving all cardinals, in which 2κ = κ+3,
and there is a club of κ on which 2µ = µ+3. Now, if cf(o(Ē)) > κ+3 then κ is
measurable in the extension. If cf(o(Ē)) > κ then κ is regular in the extension.
Finally if cf(o(Ē)) = κ then cf κ = ω, and if cf(o(Ē)) < κ then cf κ = cf(o(Ē)).

The general theorem we prove is as follows.

Theorem. Assume 〈Eξ | ξ < o(Ē)〉 is a Mitchell increasing sequence of short
extenders on κ, and κ+ ≤ ε ≤ sup{jEξ(κ) | ξ < o(Ē)}. Then there is a generic
extension in which:

(1) 2κ = |ε|.
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(2) The cofinality of κ depends on the cofinality of o(Ē) as follows:

cf(κ) =


cf(o(Ē)) cf(o(Ē)) < κ,

ω cf(o(Ē)) = κ,

κ cf(o(Ē)) > κ.

(3) If cf(o(Ē)) > |ε|, then κ is measurable.
(4) There is a club C ⊆ κ such that for each µ ∈ C, cf µ and 2µ are computed

recursively from reflections downward of the sequence 〈Eξ | ξ < o(Ē)〉.

The structure of this work is as follows. In section 2 we give the definition of
the extender based Prikry forcing notion. We quote the necessary results from [2].
In section 3 we give the definition of the extender based Magidor forcing using
two extenders. This section demonstrates in a simpler setting the ideas appearing
in later sections. In section 4 the extender based Magidor-Radin forcing is being
presented. All the proofs are complete, i.e., no proof demonstrations on, say, 1-point
extensions are given.

Our notation is standard. We use the convention that p ≤ q for condition p, q in
some forcing notion means that p is stronger (i.e., has more information) than q.
We assume large cardinals knowledge, namely extenders, measures, and elementary
embeddings, in addition to forcing knowledge. Given a set A and a cardinal λ, define
Pλ(A) = {a ⊆ A | |a| < λ}. A partial order 〈T,<〉 is a tree if for each t ∈ T the
structure 〈{s < t | s ∈ T}, <〉 is a well order. The ξ-th level of the tree T , Levξ(T ),
is the set {t ∈ T | ot{s < t | s ∈ T} = ξ}. The height of T is the minimal ordinal ξ
such that Levξ(T ) = ∅.

2. Forcing with Ē = 〈E〉

The forcing defined in this section is the extender based Prikry forcing notion
[2]. The form presented here is in essence the one from [6]. The general forcing
notion appearing in section 4 is defined by recursion, and the non-recursive step is
the extender based Prikry forcing notion.

Assume E is a short extender on κ. Let jE : V → M ' Ult(V,E) be the
corresponding natural embedding, and let κ+ ≤ ε ≤ jE(κ).

Definition 2.1. The set of coordinates appearing in a condition is

D = {〈α,E〉 | κ ≤ α < ε}.
For each κ ≤ α < jE(κ) we write ᾱ for 〈α,E〉. Define the order < on D naturally
by: ᾱ < β̄ ⇐⇒ α < β.

Definition 2.2. Assume d ∈ Pκ+ D and κ̄ ∈ d. Then ν ∈ OB(d) ⇐⇒
(1) ν : dom ν → κ;
(2) κ̄ ∈ dom ν ⊆ d;
(3) |ν| ≤ ν(κ̄);
(4) ∀ᾱ, β̄ ∈ dom ν

(
ᾱ < β̄ =⇒ ν(ᾱ) < ν(β̄)

)
.

On OB(d) the partial order < is defined by:

ν < µ ⇐⇒
(
∀ᾱ ∈ dom ν ν(ᾱ) < ν(ᾱ)

)
.

Definition 2.3. (1) Assume T ⊆ OB(d)<ξ (1 < ξ ≤ ω). Then for each n < ξ,

Levn(T ) = {〈ν0, . . . , νn〉 ∈ OB(d)n+1 | 〈ν0, . . . , νn〉 ∈ T},
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and

SucT (ν0, . . . , νn−1) = {µ ∈ OB(d) | 〈ν0, . . . , νn−1, µ〉 ∈ T}.

For notational convenience let SucT (〈〉) = Lev0(T ). Assume 〈ν〉 ∈ T .
Define

T〈ν〉 = {〈ν0, . . . , νk−1〉 | k < ξ, 〈ν, ν0, . . . , νk−1〉 ∈ T},

and by recursion when 〈ν0, . . . , νn〉 ∈ T define

T〈ν0,...,νn〉 = (T〈ν0,...,νn−1〉)〈νn〉.

(2) A measure E(d), where d ∈ Pκ+ D, is defined on OB(d) as follows:

∀X ⊆ OB(d)
(
X ∈ E(d) ⇐⇒ mc(d) ∈ j(X)

)
,

where mc(d) is defined by

mc(d) = {〈j(ᾱ), α〉 | ᾱ ∈ d}.

The measure E(n+1)(d) (n < ω) on OB(d)n+1 is defined by recursion as
follows.

X ∈ E(n+1)(d) ⇐⇒

{〈ν0, . . . , νn−1〉 ∈ Levn−1(X) | SucX(ν0, . . . , νn−1) ∈ E(d)} ∈ E(n)(d),

where we set E(0) = {〈〉} and consider it a measure on OB(d)0 = {〈〉}.
Note that essentially E(1)(d) = E(d). The measure E(ω)(d) on OB(d)<ω is
defined by recursion as follows:

X ∈ E(ω)(d) ⇐⇒ ∀n < ω Levn(X) ∈ E(n+1)(d).

(3) A set T ⊆ OB(d)<ξ (1 < ξ ≤ ω) ordered by end-extension and closed under
initial segments is a tree. A tree T ⊆ OB(d)<ω is called a d-tree if for each
〈ν0, . . . , νn−1〉 ∈ T (n < ω) we have νk < νk+1 (k < n− 1), and

∀〈ν0, . . . , νn−1〉 ∈ T SucT (ν0, . . . , νn−1) ∈ E(d).

Note that if T is a d-tree then T ∈ E(ω)(d). Moreover, if a tree T belongs
to E(ω)(d) then there is a subtree S ⊆ T which is a d-tree.

(4) Assume c, d ∈ Pκ+ D, c ⊆ d, and T is a tree with elements from OB(d).
Then the projection of T to a a tree with elements from OB(c) is

T � c = {〈ν0 � c, . . . , νn � c〉 | n < ht(T ), 〈ν0, . . . , νn〉 ∈ T}.

Definition 2.4. The following list of points leads to the definition of 〈P〈E〉,ε,≤,≤∗〉.
• A condition f is in the forcing notion P∗〈E〉,ε if f : d → <ωκ is a function

such that:
(1) κ̄ ∈ d ∈ Pκ+ D;
(2) For each ᾱ ∈ d, f(ᾱ) = 〈f0(ᾱ), . . . , fk−1(ᾱ)〉 is an increasing se-

quence in κ.
• Assume f, g ∈ P∗〈E〉,ε. Then f is an extension of g (f ≤∗P∗〈E〉,ε g) if f ⊇ g.

• For f ∈ P∗〈E〉,ε we write mc(f) and E(f) for mc(dom f) and E(dom f),
respectively. We will also say that a tree is an f -tree if it is a dom f -tree.

• Assume f ∈ P∗〈E〉,ε and ν ∈ OB(f). The condition g = f〈ν〉 ∈ P∗〈E〉,ε is
defined by:
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(1) dom g = dom f ;
(2) For each ᾱ ∈ dom g,

g(ᾱ) =

{
f(ᾱ)_〈ν(ᾱ)〉 ᾱ ∈ dom ν, ν(ᾱ) > f|f(ᾱ)|−1(ᾱ),
f(ᾱ) Otherwise.

Observe that if X ∈ E(f) then there is a subset Y ⊆ X such that Y ∈ E(f),
and for each ν ∈ Y and ᾱ ∈ dom ν, ν(ᾱ) > f|f(ᾱ)|−1(ᾱ).
• A condition p in the forcing notion P〈E〉,ε is of the form 〈f,A〉 where

(1) f ∈ P∗〈E〉,ε;
(2) A is an f -tree such that for each 〈ν〉 ∈ A and ᾱ ∈ dom ν,

f|f(ᾱ)|−1(ᾱ) < ν(ᾱ).

We write fp, Ap, and mc(p), for f , A, and mc(f).
• Let p, q ∈ P〈E〉,ε. We say that p is a Prikry extension of q (p ≤∗P〈E〉,ε q) if

(1) fp ≤∗P∗〈E〉,ε f
q;

(2) Ap � dom fq ⊆ Aq.
• Let q ∈ P〈E〉,ε and 〈ν〉 ∈ Aq. Define the one point extension of q by 〈ν〉 to

be p = q〈ν〉 ∈ P〈E〉,ε where:
(1) fp = fq〈ν〉;
(2) Ap = Aq〈ν〉.

Define q〈ν0,...,νk〉 recursively as (q〈ν0,...,νk−1〉)〈νk〉, where ν0 < · · · < νk.
Whenever the notation 〈ν0, . . . , νn−1〉 is used, where νk ∈ OB(d) (k < n),

it is implicitly assumed that νk−1 < νk (k < n).
• Let p, q ∈ P〈E〉,ε. Then p is an extension of q (p ≤P〈E〉,ε p) if there is
〈ν0, . . . , νn−1〉 ∈ Aq such that p ≤∗P〈E〉,ε q〈ν0,...,νn−1〉.

Before quoting results about this forcing we give some pictorial representation
of the forcing notion.

The weakest condition in P〈E〉,ε is 〈〈〈κ,E〉, 〈〉〉, T 〉, where T is the ‘full’ tree, i.e.,
Lev0(T ) = {κ} × κ, and the higher levels are similar. Let us call it q. We present
q graphically in figure 1.

〈κ,E〉 T

Figure 1. The weakest condition q ∈ P〈E〉,ε.

Let κ < α < jE(κ). The weakest condition in P〈E〉,ε mentioning κ and α is

〈{〈〈κ,E〉, 〈〉〉, 〈〈α,E〉, 〈〉〉}, A〉.

Let us call it p. Then p ≤∗ q. Note that the form of an arbitrary 〈ν〉 ∈ A is

{〈〈κ,E〉, τ〉, 〈〈α,E〉, µ〉}.

Note that {ν(〈κ,E〉) | 〈ν〉 ∈ A} ∈ E(κ) and {ν(〈α,E〉) | 〈ν〉 ∈ A} ∈ E(α). Figure
2 shows p graphically.

Let 〈ν0〉 ∈ A. The weakest 1-point extension of p using 〈ν0〉, i.e. p〈ν0〉, is

〈{〈〈κ,E〉, 〈ν0(〈κ,E〉)〉〉, 〈〈α,E〉, 〈ν0(〈α,E〉)〉〉}, A〈ν0〉〉.
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〈κ,E〉 〈α,E〉 A

Figure 2. The weakest condition mentioning α and κ, p ≤∗ q.

〈κ,E〉 〈α,E〉 A〈ν0〉

τ0 µ0

Figure 3. 1-point extension of p, p〈ν0〉.

Letting ν0(〈κ,E〉) = τ0 and ν0(〈α,E〉) = µ0, the condition is shown graphically in
figure 3.

Let 〈ν1〉 ∈ A〈ν0〉. The weakest 2-point extension of p using 〈ν0, ν1〉 (which is the
same as the weakest 1-point extension of p〈ν0〉 using 〈ν1〉) is

〈{〈〈κ,E〉, 〈ν0(〈κ,E〉), ν1(〈κ,E〉)〉〉, 〈〈α,E〉, 〈ν0(〈α,E〉), ν1(〈α,E〉)〉〉}, A〈ν0,ν1〉〉.

Assuming ν1(〈κ,E〉) = τ1 and ν1(〈α,E〉) = µ1, p〈ν0,ν1〉 is shown graphically in
figure 4.

〈κ,E〉 〈α,E〉 A〈ν0,ν1〉

τ0

τ1
µ0

µ1

Figure 4. 2-point extension of p, p〈ν0,ν1〉 = (p〈ν0〉)〈ν1〉.

Let κ < γ < ε such that γ 6= α. We want r ∈ P〈E〉,ε to be a Prikry extension
of p〈ν0,ν1〉 mentioning γ. We note that there is a complete freedom in choosing
fr(〈γ,E〉). We can have fr(〈κ,E〉) = 〈〉, but this time we prefer something else.
Thus let ζ0 < κ. We let the extension be

〈{〈〈κ,E〉, 〈ν0(〈κ,E〉), ν1(〈κ,E〉)〉〉, 〈〈α,E〉, 〈ν0(〈α,E〉), ν1(〈α,E〉)〉〉,
〈〈γ,E〉, 〈ζ0〉〉}, B〉.

This B must satisfy the following.

(1) {ν � {〈κ,E〉, 〈α,E〉} | ν ∈ B} ∈ E({κ, α}).
(2) {ν � {〈κ,E〉, 〈α,E〉} | ν ∈ B} ⊆ A.
(3) {ν(〈γ,E〉) | ν ∈ A} ∈ E(γ).

Graphically r appears in Figure 5.

〈κ,E〉 〈α,E〉 〈γ,E〉 B

τ0

τ1
µ0

µ1

ζ0

Figure 5. r ≤∗ p〈ν0,ν1〉.
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Take 〈ν2〉 ∈ B such that 〈γ,E〉 /∈ dom ν2.

r〈ν2〉 = 〈{〈〈κ,E〉, 〈ν0(〈κ,E〉), ν1(〈κ,E〉), ν2(〈κ,E〉)〉〉,
〈〈α,E〉, 〈ν0(〈α,E〉), ν1(〈α,E〉), 〈α,E〉, ν2(〈α,E〉)〉〉,

〈〈γ,E〉, 〈ζ0〉〉}, B〈ν2〉〉,

which appears graphically in figure 6, where τ2 = ν2(κ̄) and µ2 = ν2(ᾱ).

〈κ,E〉 〈α,E〉 〈γ,E〉 B〈ν2〉

τ0

τ1

τ2

µ0

µ1

µ2

ζ0

Figure 6. r〈ν2〉.

Take 〈ν3〉 ∈ B such that dom ν3 = dom fr. Then

r〈ν2,ν3〉 = 〈{〈〈κ,E〉, 〈ν0(〈κ,E〉), ν1(〈κ,E〉), ν2(〈κ,E〉), ν3(〈κ,E〉)〉〉,
〈〈α,E〉, 〈ν0(〈α,E〉), ν1(〈α,E〉), ν2(〈α,E〉), ν3(〈α,E〉)〉〉,
〈〈γ,E〉, 〈ζ0, ν3(〈γ,E〉)〉〉}, B〈ν2,ν3〉〉,

which appears graphically in figure 7, where τ3 = ν3(〈κ,E〉), µ3 = ν3(〈α,E〉), and
o3 = ν3(〈γ,E〉).

〈κ,E〉 〈α,E〉 〈γ,E〉 B〈ν2,ν3〉

τ0

τ1

τ2

τ3

µ0

µ1

µ2

µ3

ζ0

o3

Figure 7. r〈ν2,ν3〉.

Lemma 2.5. (Gitik-Magidor)
(1) 〈P〈E〉,ε,≤∗〉 is κ-closed.
(2) 〈P〈E〉,ε,≤,≤∗〉 is of Prikry type.
(3) P〈E〉,ε has the κ++-c.c.
(4) 
P〈E〉,ε

p(κ+)V remains cardinalq.

Theorem 2.6. (Gitik-Magidor) Let G be P〈E〉,ε-generic. Then:
(1) V and V [G] have the same cardinals and the same bounded subsets of κ.
(2) cfV [G](κ) = ω and (κω = |ε|)V [G].
(3) ∀µ ∈ [κ, κω) µω = κω.
(4) Outside of [κ, κω) the GCH is holds.

The following definition is needed in order to bootstrap the recursive definition
of the Magidor-Radin forcing in later sections.
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Definition 2.7. Assume 〈ei | i < n〉 (n < ω) is a sequence of extenders such that
ei ∈ Vcrit(ei+1). The product forcing notion P =

∏
i<n Pei is defined by applying

the definitions of the Prikry with extenders forcing notion coordinatewise. That is
for each 〈pi | i < n〉, 〈qi | i < n〉 ∈ P,

〈pi | i < n〉 ≤P 〈qi | i < n〉 ⇐⇒ ∀i < n pi ≤ qi,

and

〈pi | i < n〉 ≤∗P 〈qi | i < n〉 ⇐⇒ ∀i < n pi ≤∗ qi.

For p = 〈pi | i < n〉 ∈ P we use the notation p← = p0
_ · · ·_ pn−2 and p→ = pn−1.

Assume 〈ν〉 ∈ Ap→ . Define the condition p〈ν〉 recursively as follows.

p〈ν〉 = p←
_ p→〈ν〉.

Note that with p← and p→ defined we have for each p, q ∈ P,

p ≤ p ⇐⇒
(
p← ≤ q← and p→ ≤ q→

)
,

and

p ≤∗ p⇐⇒
(
p← ≤∗ q← and p→ ≤∗ q→

)
.

It is a standard fact that 〈P,≤P,≤∗P〉 is a Prikry type forcing notion. Since the
extenders ei are disjoint, factoring of P is easily achieved, thus a generic extension
by P can be analyzed by inspecting generic extensions by each factor Pei .

3. Forcing with Ē = 〈E0, E1〉 (E0 C E1)

The aim of this section is to introduce the techniques used in section 4, where
the general forcing notion is defined. Thus we show the step immediately following
the extender based Prikry forcing notion.

Assume E0 and E1 are (short) extenders on κ such that E0 C E1 (i.e., E0 ∈
Ult(V,E1)). Let jEk : V →Mk ' Ult(V,Ek) (k < 2) be the corresponding natural
elementary embeddings. Note that jE0(κ) < jE1(κ). Let κ+ ≤ ε ≤ jE1(κ).

Definition 3.1. An extender sequence ν̄ has one of the following three forms.
(1) 〈τ〉 where τ ∈ On.
(2) 〈τ, e0〉 where e0 is an extender such that crit e0 ≤ τ < je0(crit(e0)).
(3) 〈τ, e0, e1〉 where e0 and e1 are extenders such that e0 C e1, crit(e0) =

crit(e1), and crit(e0) ≤ τ < je0(crit(e0)).
We write ν̄0 for τ . Each extender sequence ν̄ has an order o(ν̄) defined by:

o(ν̄) =


0 if ν̄ = 〈τ〉,
1 if ν̄ = 〈τ, e0〉,
2 if ν̄ = 〈τ, e0, e1〉.

On the extender sequences a partial order < is defined by: ν̄ < µ̄ ⇐⇒ ν̄0 < µ̄0.

Definition 3.2. The set of coordinates D used in a condition is defined to be
D0 ∪D1, where

D0 = {〈α,E0, E1〉 | κ ≤ α < min(jE0(κ), ε)},
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and

D1 = {〈α,E1〉 | jE0(κ) ≤ α < ε}.

Note that D1 might be empty (if ε ≤ jE0(κ)). For each κ ≤ α < jE0(κ) we write ᾱ
for 〈α,E0, E1〉, and for each jE0(κ) ≤ α < jE1(κ) we write ᾱ for 〈α,E1〉.

On D the order < is defined by: ᾱ < β̄ ⇐⇒ α < β.

Definition 3.3. The set of ranges R appearing in conditions is set to be R0 ∪R1,
where

R0 = {〈τ〉 | τ < κ},

and

R1 = {〈τ, e〉 | e is an extender, crit(e) ≤ τ < je(crit(e)) < κ}.

On R the partial order < is defined by ν̄ < µ̄ ⇐⇒ ν̄0 < µ̄0.

Definition 3.4. Assume d ∈ Pκ+ D. Then ν ∈ OB(d) ⇐⇒
(1) ν : dom ν → R;
(2) κ̄ ∈ dom ν ⊂ d;
(3) |ν| ≤ ν(κ̄);
(4) ∀ᾱ ∈ dom ν

(
o(ν(ᾱ)) < o(ᾱ)

)
;

(5) If o(ν(κ̄)) = 0 then for each ᾱ ∈ dom ν, α < jE0(κ) and o(ν(ᾱ)) = 0. If
o(ν(κ̄)) = 1 then ν(κ̄) = 〈τ, e0〉, where τ = crit(e0), and for each ᾱ ∈ dom ν,
if α ∈ (κ, jE0(κ)) then ν(ᾱ) = 〈ρ, e0〉 for some ρ ∈ (τ, je0(τ)), and if
α ∈ [jE0(κ), jE1(κ)) then ν = 〈ρ〉 for some ρ ∈ [je0(τ), je1(τ)).

(6) ∀ᾱ, β̄ ∈ dom ν
(
ᾱ < β̄ =⇒ ν(ᾱ) < ν(β̄)

)
.

On OB(d) the partial order < is defined by:

ν < µ ⇐⇒
(
∀ᾱ ∈ dom ν ν(ᾱ) < µ(ᾱ)

)
.

Definition 3.5. (1) Assume T ⊆ OB(d)<ξ (1 < ξ ≤ ω). Define Levn(T ),
SucT (ν0, . . . , νn−1), and T〈ν0,...,νn−1〉 as in definition 2.3 taking into consid-
eration the current definition of OB(d).

(2) The measures E0(d) and E1(d) are defined on OB(d) as follows:

∀X ⊆ OB(d)
(
X ∈ E0(d) ⇐⇒ mc0(d) ∈ jE0(X)

)
,

and

∀X ⊆ OB(d)
(
X ∈ E1(d) ⇐⇒ mc1(d) ∈ jE1(X)

)
,

where

mc0(d) = {〈jE0(ᾱ), R0(ᾱ)〉 | ᾱ ∈ d, α < j0(κ)},
mc1(d) = {〈jE1(ᾱ), R1(ᾱ)〉 | ᾱ ∈ d},

and the functions R0 and R1 are defined by:

∀κ ≤ α < jE0(κ) R0(ᾱ) = 〈α〉,
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and

∀κ ≤ α < jE1(κ) R1(ᾱ) =

{
〈α,E0〉 κ ≤ α < jE0(κ),
〈α〉 jE0(κ) ≤ α < jE1(κ).

Name the intersection of the measures E(d). That is

E(d) = E0(d) ∩ E1(d).

(3) Since there are two basic measures E0(d) and E1(d) on OB(d), there are sev-
eral product measures possible. The basic property of a tree T ⊆ OB(d)n+1

we need is that the splittings are in a big set. That is for each k ≤ n,

∀〈ν0, . . . , νk−1〉 ∈ T ∃i < 2 SucT (ν0, . . . , νk−1) ∈ Ei(d).

Thus to characterize the product measure a function ι : T → 2 is needed
such that for each k ≤ n,

∀〈ν0, . . . , νk−1〉 ∈ T SucT (ν0, . . . , νk−1) ∈ Eι(ν0,...,νk−1)(d).

Observe that () ∈ dom ι. Note that by removing a measure zero set from T
the function ι is the constant function on each level of T . Thus a product
measure on OB(d)n+1 is characterized by a sequence from n+12. Thus
define by recursion the product measure E(ῑ)(d) on OB(d)n+1, where ῑ =
〈ι0, . . . , ιn〉 is the characteristic of the measure as follows:

X ∈ E(ῑ)(d) ⇐⇒
{〈ν0, . . . , νn−1〉 ∈ Levn−1(X) | SucX(ν0, . . . , νn−1) ∈ E(ιn)(d)}

∈ E(ι0,...,ιn−1)(d),

where we set E() = {〈〉} and consider it a measure on OB(d)0 = {〈〉}. Note
that essentially E(ι)(d) = Eι(d), where ι ∈ 2. For ῑ ∈ ω2, the measure
E(ῑ)(d) on OB(d)<ω is defined by recursion as follows:

X ∈ E(ῑ)(d) ⇐⇒ ∀n < ω Levn(X) ∈ E(ῑ�(n+1))(d).

The intersection of all the measures on OB(d)n is named E(n)(d), i.e.,

E(n)(d) =
⋂
{E(ῑ)(d) | ῑ ∈ n2},

and the intersection of all the measures on OB(d)<ω is named E(ω)(d), i.e.,

E(ω)(d) =
⋂
{E(ῑ)(d) | ῑ ∈ <ω2}.

Note that E(1)(d) and E(d) are essentialy the same filter.
(4) A set T ⊆ OB(d)<ξ (1 < ξ ≤ ω) ordered by end-extension is called a tree

if it is closed under initial segments. A tree T ⊆ OB(d)<ω is called a d-tree
if for each 〈ν0, . . . , νn−1〉 ∈ T (n < ω) we have νk−1 < νk (k < n), and

∀〈ν0, . . . , νn−1〉 ∈ T SucT (ν0, . . . , νn−1) ∈ E(d).

Note that if T is a d-tree then T ∈ E(ω)(d). Hence for each n < ω,
Levn(T ) ∈ E(n+1)(d). Note also that if T is a tree such that T ∈ E(ω)(d),
then we can find a subtree S ⊆ T such that S is a d-tree.
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(5) Assume c, d ∈ Pκ+ D, c ⊆ d, and T is a tree with elements from OB(d).
Then the projection of T to a a tree with elements from OB(c) is

T � c = {〈ν0 � c, . . . , νn � c〉 | n < ht(T ), 〈ν0, . . . , νn〉 ∈ T}.

Definition 3.6. The following list of points leads to the definition of 〈P〈E0,E1〉,ε,≤
,≤∗〉.

• A condition f is in the forcing notion P∗〈E0,E1〉,ε, if f : d→ <ωR is a function
such that:

(1) κ̄ ∈ d ∈ Pκ+ D;
(2) For each ᾱ ∈ d, f(ᾱ) = 〈f0(ᾱ), . . . , fk−1(ᾱ)〉 is an increasing se-

quence in R.
(3) ∀ᾱ ∈ d ∀i < |f(ᾱ)|

(
o(fi(ᾱ)) < o(ᾱ)

)
.

(4) For each ᾱ ∈ d, 〈o(fi(ᾱ)) | i < |f(ᾱ)|〉 is non-increasing.
• Assume f, g ∈ P∗〈E0,E1〉,ε,. Then f is an extension of g (f ≤∗P∗〈E0,E1〉,ε

, g) if
f ⊇ g.
• By OB(f), mc(f), E(f), and f -tree, where f ∈ P∗〈E0,E1〉,ε,, we refer toi

OB(dom f), mc(dom f), E(dom f), and dom f -tree.
• Assume f ∈ P∗〈E0,E1〉,ε, and ν ∈ OB(f). We define f〈ν〉 according to the

form of ν(κ̄). If o(ν(κ̄)) = 0 then g = f〈ν〉 ∈ P∗〈E0,E1〉,ε, is defined by:
(1) dom g = dom f ;
(2) For each ᾱ ∈ dom g,

g(ᾱ) =

{
f(ᾱ)_〈ν(ᾱ)〉 ᾱ ∈ dom ν, ν(ᾱ) > f|f(ᾱ)|−1(ᾱ),
f(ᾱ) Otherwise.

If o(ν(κ̄)) = 1 then g←
_ g→ = f〈ν〉 is defined by:

(1) dom g→ = dom f ;
(2) For each ᾱ ∈ dom g→,

g(ᾱ) =

{
f(ᾱ) � k_〈ν(ᾱ)〉 ᾱ ∈ dom ν, ν(ᾱ) > f|f(ᾱ)|−1(ᾱ),
f(ᾱ) Otherwise,

where

k = min{l ≤ |fq(ᾱ)| | ∀l ≤ i < |fq(ᾱ)| o(fqi (ᾱ)) < o(ν(ᾱ))}.(*)

Note that k is defined so that 〈o(fqi (ᾱ)) | i < k〉_〈o(ν(ᾱ))〉 will be
non-increasing;

(3) dom g← = {ν(ᾱ) | ᾱ ∈ dom ν, o(ν(ᾱ)) = 1};
(4) For each ᾱ ∈ dom ν such that o(ν(ᾱ)) = 1, g←(ν(ᾱ)) = f(ᾱ) �

(|fq(ᾱ)| \ k), where k is defined by (*).
Observe that one can use the definition of the case o(ν(κ̄)) = 1 also for the
case o(ν(κ̄)) = 0. One gets in this case g← = ∅.
• A condition p in the forcing notion P〈E0,E1〉, ε→ is of the form 〈f,A〉 where

(1) f ∈ P∗〈E0,E1〉,ε,;
(2) A is an f -tree.

We write fp, Ap, mc0(p), and mc1(p), for f , A, mc0(f), and mc1(f).
• Let p, q ∈ P〈E0,E1〉, ε→. Then p is a Prikry extension of q (p ≤∗P〈E0,E1〉,ε→

q)
if

(1) fp ≤∗P∗〈E0,E1〉,ε
, f

q;
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(2) Ap � dom fq ⊆ Aq.
• A condition p in the forcing notion P〈E0,E1〉,ε is of the form p←

_ p→ where
(1) p→ ∈ P〈E0,E1〉, ε→;
(2) p← is a condition in a product of extender base Prikry forcing

notions (as defined in 2.7) which is in Vκ. I.e., p← ∈
∏
i<n Pei ,

where 〈ei | i < n〉 (n < ω) are extenders such that ei ∈ Vcrit(ei+1)

and en−1 ∈ Vκ.
Define recursively fp to be fp← _ fp→ . We write also fp← and fp→ for fp←
and fp→ .
• Let p, q ∈ P〈E0,E1〉,ε. We say that p is a Prikry extension of q (p ≤∗P〈E0,E1〉,ε

q) if:
(1) p→ ≤∗P〈E0,E1〉→

q→.
(2) p← ≤∗ q←. (This partial order is defined in 2.7.)

• Assume q ∈ P〈E0,E1〉, ε→ and 〈ν〉 ∈ Aq→. The one point extension of q
by 〈ν〉 is a condition p = q〈ν〉 ∈ P〈E0,E1〉,ε of the form p→ (if o(ν(κ̄)) = 0)
or p←_ p→ (o(ν(κ̄)) = 1) where p→ ∈ P〈E0,E1〉, ε→ and p← ∈ P〈e0〉, if
applicable, are defined as follows. If o(ν(κ̄)) = 0 then:

(1) fp = fq〈ν〉;
(2) Ap = Aq〈ν〉.

If o(ν(κ̄)) = 1 then:
(1) fp = fq〈ν〉;
(2) Ap→ = Aq〈ν〉;
(3) Ap← = {〈T (µ0), . . . , T (µn)〉 | n < ω, 〈µ0, . . . , µn〉 ∈ Aq, µn < ν},

where the function T , used to ’translate coordinates’, is defined as
follows:

dom
(
T (µ)

)
= {ν(ᾱ) | ᾱ ∈ domµ, o(ν(ᾱ)) = 1},

and(
T (µ)

)(
ν(ᾱ)

)
= µ(ᾱ).

• Assume p ∈ P〈E0,E1〉,ε and 〈ν〉 ∈ Ap→ . The one point extension of p by 〈ν〉
is defined to be

p〈ν〉 = p←
_ p→〈ν〉.

Define p〈ν0,...,νk〉 recursively as (p〈ν0,...,νk−1〉)〈νk〉, where ν0 < · · · < νk.
Whenever the notation 〈ν0, . . . , νn−1〉 is used, where νk ∈ OB(d) (k < n),

it is implicitly assumed that νk < νk+1 (k < n− 1).
• Let p, q ∈ P〈E0,E1〉,ε. Then p is an extension of q (p ≤P〈E0,E1〉,ε

p) if there
are 〈ν0, . . . , νn−1〉 ∈ Aq such that p ≤∗P〈E0,E1〉,ε

q〈ν0,...,νn−1〉.

We give a pictorial representation of P〈E0,E1〉,ε before continuing to the full
fledged forcing in the next section.

The weakest condition in P〈E0,E1〉,ε is 〈〈κ̄, 〈〉〉, A〉, where A is a tree with first
level

{κ̄} × (κ ∪ {〈ν, e0〉 | ν < κ, e0 is an extnder with crit(e0) = ν}),

and similary sets for the higher levels. Let us call it q. We present q graphically in
figure 8.
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〈κ,E0, E1〉 A

Figure 8. The weakest condition q ∈ P〈E0,E1〉,ε.

Let κ < α < jE0(κ) and jE0(κ) ≤ β < ε. The weakest condition in P〈E0,E1〉,ε
mentioning κ, α, and β is

〈{〈κ̄, 〈〉〉, 〈ᾱ, 〈〉〉, 〈β̄, 〈〉〉}, B〉.
Let us call it p. Then p ≤∗ q. Note that the form of 〈ν〉 ∈ B is either

ν = {〈κ̄, τ〉, 〈ᾱ, µ〉},
or

ν = {〈κ̄, 〈τ, e0〉〉, 〈ᾱ, 〈µ, e0〉〉, 〈β̄, π〉},
Note that

{ν(κ̄) | ν ∈ B} ∈ E({κ}),
{ν(ᾱ) | ν ∈ B} ∈ E({α}),

and

{ν(β̄) | ν ∈ B} ∈ E1(β).

Figure 9 shows p graphically.

〈κ,E0, E1〉 〈α,E0, E1〉 〈β,E1〉 B

Figure 9. The weakest condition mentioning κ, α and β, p ≤∗ q.

Let 〈ν0〉 ∈ B be of the form

ν0 = {〈κ̄, 〈τ0〉〉, 〈ᾱ, 〈µ0〉〉}.
The weakest 1-point extension of p using 〈ν0〉, i.e., p〈ν0〉, is

〈{〈κ̄, 〈τ0〉〉, 〈ᾱ, 〈µ0〉〉, 〈β̄, 〈〉〉}, B〈ν0〉〉.
The condition is shown graphically in figure 10.

〈κ,E0, E1〉 〈α,E0, E1〉 〈β,E1〉 B〈ν0〉

τ0 µ0

Figure 10. 1-point extension of p, p〈ν0〉.

Let 〈ν1〉 ∈ B〈ν0〉 be such that and

ν1 = {〈κ̄, 〈τ1, e0〉〉, 〈ᾱ, 〈µ1, e0〉〉, 〈β̄, 〈ζ0〉〉}.
The weakest 2-point extension of p using 〈ν0, ν1〉 (which is the same as the weakest
1-point extension of p〈ν0〉 using 〈ν1〉) is

〈{〈〈τ1, e0〉, 〈τ0〉〉, 〈〈µ1, e0〉, 〈µ0〉〉}, B � crit(e0)〉_

〈{〈κ̄, 〈〈τ1, e0〉〉〉, 〈ᾱ, 〈〈µ1, e0〉〉〉, 〈β̄, 〈〈ζ0〉〉〉}, B〈ν0,ν1〉〉.
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The condition p〈ν0,ν1〉 is shown graphically in figure 11.

〈τ1, e0〉 〈µ1, e0〉 S � crit(e0)

τ0 µ0

〈κ,E0, E0〉 〈α,E0, E1〉 〈β,E1〉 B〈ν0,ν1〉

〈τ1, e0〉 〈µ1, e0〉 ζ0

Figure 11. 2-point extension of p, p〈ν0,ν1〉 = (p〈ν0〉)〈ν1〉.

We take the following from B:

ν2 = {〈κ̄, 〈τ2〉〉, 〈ᾱ, 〈µ2〉〉},
ν3 = {〈κ̄, 〈τ3〉〉, 〈ᾱ, 〈µ3〉〉},
ν4 = {〈κ̄, 〈τ4, e1〉〉, 〈ᾱ, 〈µ4, e1〉〉, 〈β̄, 〈ζ1〉〉}.

We show p〈ν0,ν1,ν2,ν3〉 in figure 12, and p〈ν0,ν1,ν2,ν3〉 in 13.

〈τ1, e0〉 〈µ1, e0〉 B � crit(e0)

τ0 µ0

〈κ,E0, E0〉 〈α,E0, E1〉 〈β,E1〉 B〈ν0,...,ν3〉

〈τ1, e0〉
〈τ2〉
〈τ3〉

〈µ1, e0〉
〈µ2〉
〈µ3〉

ζ0

Figure 12. 4-point extension of p, i.e., p〈ν0,ν1,ν2,ν3〉

〈τ1, e0〉 〈µ1, e0〉 B � crit(e0)

τ0 µ0

〈τ4, e1〉 〈µ4, e1〉 B � crit(e1)

τ2

τ3
µ2

µ3

〈κ,E0, E0〉 〈α,E0, E1〉 〈β,E1〉 B〈ν0,...,ν4〉

〈τ1, e0〉
〈τ4, e1〉

〈µ1, e0〉
〈µ4, e0〉

ζ0

ζ1

Figure 13. 5-point extension of p, i.e., p〈ν0,ν1,ν2,ν3,ν4〉.

Note that each of the generated blocks operates independently of the others.
Thus points and domain enlargement can be done on all blocks, not only on the
highest one.

4. Forcing with Ē = 〈Eξ | ξ < o(Ē)〉

Assume Ē = 〈Eξ | ξ < o(Ē)〉 is a Mitchell increasing sequence of (short) ex-
tenders on κ, i.e., ∀ξ < o(Ē) 〈Eζ | ζ < ξ〉 ∈ Ult(V,Eξ). Let jEξ : V → Mξ '
Ult(V,Eξ) (ξ < o(Ē)) be the correspondng natural elementary embeddings. Note
that jEξ1 (κ) < jEξ2 (κ) (ξ1 < ξ2 < o(Ē)). Let κ+ ≤ ε ≤ supξ<o(Ē) jEξ(κ).
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Definition 4.1. An extender sequence ν̄ has the form 〈τ, e0, . . . , eξ, . . .〉 (ξ < µ)
where 〈eξ | ξ < µ〉 is a Mitchell increasing sequence of (short) extenders with
identical critical points, and crit(e0) ≤ ν < je0(crit(e0)). The order of the extender
sequence ν̄ is µ (o(ν̄) = µ). We write ν̄0 for τ .

Note that formally the Mitchell order function o(. . . ) is defined on different type
of objects. The first object is of the form 〈Eξ | ξ < λ〉, and the second is of the
form 〈ν, e0, . . . , eξ, . . . | ξ < µ〉. In either case only the extenders are considered,
thus there is no confusion.

Definition 4.2. The set D is a base set used in domain of functions. For each
κ ≤ α < sup{jEξ(κ) | ξ < o(Ē)} define

ᾱ = 〈α〉_〈Eζ | ζ < o(Ē), α < jEζ (κ)〉.
Then define

D = {ᾱ | κ ≤ α < ε}.

On D the order < is defined by ᾱ < β̄ ⇐⇒ α < β. The set R is used as the base
set for range of functions.

R = {ν̄ ∈ Vκ | ν̄ is an extender sequence}.
On R the order < is defined by ν̄ < µ̄ ⇐⇒ ν̄0 < µ̄0.

Definition 4.3. Assume d ∈ Pκ+ D. Then ν ∈ OB(d) ⇐⇒
(1) ν : dom ν → R;
(2) κ̄ ∈ dom ν ⊆ d;
(3) |ν| ≤ ν(κ̄)0;
(4) ∀ᾱ ∈ dom ν

(
o(ν(ᾱ)) < o(ᾱ)

)
;

(5) For each ᾱ ∈ dom ν such that ᾱ 6= κ̄ the following is satisfied. Assume

ν(κ̄) = 〈τ, e0, . . . , eξ, . . . | ξ < ζκ〉, (where crit(e0) = τ)

and

ν(ᾱ) = 〈τ ′, e′0, . . . , e′ξ, . . . | ξ < ζα〉.

Then 〈eζ+ξ | ξ < ζα〉 = 〈e′ξ | ξ < ζα〉, where ζ < ζκ is minimal such that
τ ′ ∈ [supζ′<ζ jeζ′ (τ), j(eζ)(τ)).

(6) ∀ᾱ, β̄ ∈ dom ν
(
ᾱ < β̄ =⇒ ν(ᾱ) < ν(β̄)

)
.

On OB(d) the partial order < is defined by:

ν < µ ⇐⇒
(
∀ᾱ ∈ dom ν ν(ᾱ) < µ(ᾱ)

)
.

Definition 4.4. (1) Assume T ⊆ OB(d)<ξ (1 < ξ ≤ ω). Then for each n < ξ,

Levn(T ) = {〈ν0, . . . , νn〉 ∈ OB(d)n+1 | 〈ν0, . . . , νn〉 ∈ T},

and

SucT (ν0, . . . , νn−1) = {µ ∈ OB(d) | 〈ν0, . . . , νn−1, µ〉 ∈ T}.

For notational convenience let SucT (〈〉) = Lev0(T ). Assume 〈ν〉 ∈ T .
Define

T〈ν〉 = {〈ν0, . . . , νk−1〉 | k < ω, 〈ν, ν0, . . . , νk−1〉 ∈ T},
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and by recursion when 〈ν0, . . . , νn〉 ∈ T define

T〈ν0,...,νn〉 = (T〈ν0,...,νn−1〉)〈νn〉.

(2) The measures Eξ(d) (d ∈ Pκ+ D, ξ < o(Ē)) on OB(d) are defined as follows:

∀X ⊆ OB(d)
(
X ∈ Eξ(d) ⇐⇒ mcξ(d) ∈ jEξ(X)

)
,

where

mcξ(d) = {〈jEξ(ᾱ), Rξ(ᾱ)〉 | ᾱ ∈ d, ᾱ < jEξ(κ)},

where Rξ is defined for each κ ≤ α <≥ by

Rξ(ᾱ) = 〈α〉_〈Eξ′ | ξ′ < ξ, α < jEξ′ (κ)〉.

The intersection of the measures is named E(d). That is

E(d) =
⋂
{Eξ(d) | ξ < o(Ē)}.

(3) A set T ⊆ OB(d)<ξ (1 < ξ ≤ ω) ordered by end-extension and closed under
initial segments is a tree. A tree T ⊆ OB(d)<ω is called a d-tree if for each
〈ν0, . . . , νn−1〉 ∈ T we have νk < νk+1 (k < n− 1), and for each n < ω,

∀〈ν0, . . . , νn−1〉 ∈ T SucT (ν0, . . . , νn−1) ∈ E(d).

(4) Assume c, d ∈ Pκ+ D, c ⊆ d, and T is a tree with elements from OB(d).
Then the projection of T to a a tree with elements from OB(c) is

T � c = {〈ν0 � c, . . . , νn � c〉 | n < ht(T ), 〈ν0, . . . , νn〉 ∈ T}.

Definition 4.5. The following list of points leads to the definition of 〈PĒ,ε,≤,≤∗〉.
• A condition f is in the forcing notion P∗

Ē,ε
if f : d → <ωR is a function

such that:
(1) κ̄ ∈ d ∈ Pκ+ D;
(2) For each ᾱ ∈ d, f(ᾱ) = 〈f0(ᾱ), . . . , fk−1(ᾱ)〉 is an increasing se-

quence in R;
(3) For each ᾱ ∈ d and i < |f(ᾱ)|,

(
o(fi(ᾱ)) < o(ᾱ)

)
.

(4) For each ᾱ ∈ d, the sequence 〈o(fi(ᾱ)) | i < |f(ᾱ)|〉 is non-
increasing.

• Let f, g ∈ P∗
Ē,ε

. We say that f is an extension of g (f ≤∗P∗
Ē,ε

g) if f ⊇ g.

• As usual we write OB(f), Eξ(f), E(f), mcξ(f), and f -tree, for OB(dom f),
Eξ(dom f), E(dom f), mcξ(dom f), and dom f -tree, respectively, where f ∈
P∗
Ē,ε

.
• Assume f ∈ P∗

Ē,ε
and ν ∈ OB(f). Define g = f〈ν〉 to be of the form

g = g←
_ g→ (The case g← = ∅ is allowed) where:

(1) dom g→ = dom f ;
(2) For each ᾱ ∈ dom g→,

g→(ᾱ) =

{
f(ᾱ) � k_〈ν(ᾱ)〉, ᾱ ∈ dom ν, ν(ᾱ) > f|f(ᾱ)|−1(ᾱ),
f(ᾱ) Otherwise,

where

k = min{l ≤ |f(ᾱ)| | ∀l ≤ i < |f(ᾱ)| o(fi(ᾱ)) < o(ν(ᾱ))}.(*)
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The above value of k is defined so as to ensure that 〈o(fi(ᾱ)) | i <
k〉_ o(ν(ᾱ)) is non-increasing. The part removed from f(ᾱ), i.e.,
f(ᾱ) � (|fq(ᾱ)| \ k), will appear in g←;

(3) dom g← = {ν(ᾱ) | ᾱ ∈ dom ν, o(ν(ᾱ)) > 0};
(4) For each ᾱ ∈ dom ν such that o(ν(ᾱ)) > 0 we have

g←(ν(ᾱ)) = f(ᾱ) �
(
|f(ᾱ)| \ k

)
,

where k is defined by (*).
• A condition p in the forcing notion PĒ,ε→ is of the form 〈f,A〉 where:

(1) f ∈ P∗
Ē,ε

;
(2) A is an f -tree such that for each 〈ν〉 ∈ A and each ᾱ ∈ dom ν,

f|f(ᾱ)|−1(ᾱ) < ν(ᾱ).

We write fp, Ap, and mcξ(p), for f , A, and mcξ(f), respectively.
• Let p, q ∈ PĒ,ε→. We say that p is a Prikry extension of q (p ≤∗PĒ,ε→ q) if

(1) fp ≤∗P∗
Ē,ε

fq;

(2) Ap � dom fq ⊆ Aq.
• A condition p in the forcing notion PĒ,ε is of the form p←

_ p→ where
p→ ∈ PĒ,ε→ and p← ∈

∏
i<n Pēi (n < ω), where ēi are extender sequences

such that o(ēi) ≤ o(Ē), ēi ∈ Vcrit(ēi+1), ēn−1 ∈ Vκ, and for each 〈ν〉 ∈ Ap→ ,
ν(κ̄)0 > crit(ēn−1).
• Conditions in PĒ,ε have lower parts PĒ,ε← defined by PĒ,ε← = {p← | p ∈
PĒ,ε}.
• For p ∈ PĒ,ε we define fp recursively to be fp← _ fp→ , and we write fp←

and fp→ for fp← and fp→ , respectively.
• Let p, q ∈ PĒ,ε. We say that p is a Prikry extension of q (p ≤∗PĒ,ε q) if:

(1) p→ ≤∗ q→;
(2) p← ≤∗ q←.

• We say that p is a strong Prikry extension of q (p ≤∗∗PĒ,ε q) if p ≤∗ q and
fp = fq.
• Assume q ∈ PĒ,ε→ and 〈ν〉 ∈ Aq. The condition p ∈ PĒ,ε is the one point

extension of q by 〈ν〉 (p = q〈ν〉) if it is of the form p←
_ p→ where p← ∈ Pē→

and p→ ∈ PĒ,ε→ are defined as follows.
(1) fp = fq〈ν〉.
(2) Ap→ = Aq〈ν〉.
(3) Ap← = {〈T (µ0), . . . , T (µn)〉 | n < ω, 〈µ0, . . . , µn〉 ∈ Aq, µn < ν},

where the extender sequence T (µ) is defined by:

dom
(
T (µ)

)
= {ν(ᾱ) | ᾱ ∈ domµ, o(ν(ᾱ)) > 0},

and(
T (µ)

)
(ν(ᾱ)) = µ(ᾱ).

Define q〈ν0,...,νn〉 recursively by (q〈ν0,...,νn−1〉)〈νn〉, where 〈ν0, . . . , νn−1〉 ∈
Aq.
• Assume p ∈ PĒ,ε and 〈ν〉 ∈ Ap→ . Then

p〈ν〉 = p←
_ p→〈ν〉〈ν〉 ∈ Ap→ .

Define p〈ν0,...,νk〉 recursively by (p〈ν0,...,νk−1〉)〈νk〉.
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• Let p, q ∈ PĒ,ε. Then p is stronger than q (p ≤PĒ,ε q) if p = r_ s and there
is 〈ν0, . . . , νn−1〉 ∈ Aq→ such that:

(1) s ≤∗PĒ,ε q→〈ν0,...,νn−1〉.
(2) r ≤ q←.

• Assume p ∈ PĒ,ε. Then p→ ∈ PĒ,ε and we define

PĒ,ε/p→ = {q ∈ PĒ,ε | q ≤ p→},

and

PĒ,ε/p← = {r | r ≤ p←}.

It is obvious that PĒ,ε/p factors to PĒ,ε/p← × PĒ,ε/p→.

The forcing notion PĒ,ε preserves all cardinals. The roadmap of the proof of this
fact is as follows:

(1) The κ++-cc of PĒ,ε is proved in 4.6.
(2) The forcing PĒ,ε is shown to be of Prikry type in 4.12, which together

with the factoring of PĒ,ε/p to two Prikry type forcing notions PĒ,ε/p→ ×
PĒ,ε/p←, where the Prikry order on PĒ,ε/p→ is closed enough and PĒ,ε/p←
is small enough, yields that all cardinals up to κ are preserved. Since κ is
a limit cardinal it is preserved also.

(3) A special argument is given for the preservation of κ+ in 4.14.

Claim 4.6. PĒ,ε satisfies the κ++-cc.

Proof. Take an anti-chain {pξ | ξ < κ++} ⊆ PĒ,ε. Assume without loss of generality
that pξ1← = pξ2← for each ξ1 < ξ2 < κ++. Note that for each two conditions p, q ∈
PĒ,ε→, if fp ‖P∗

Ē,ε
fq then p ‖PĒ,ε q. Necessarily the set 〈fpξ→ | ξ < κ++〉 is of size

κ++, and we are done by the κ++-cc of P∗
Ē,ε

. �

The following claim is immediate from the definition of the forcing notion PĒ,ε.

Claim 4.7. Assume p ∈ PĒ,ε, for each n < ω, 〈ν0, . . . , νn−1〉 ∈ Ap→ and r ≤
p〈ν0,...,νn−1〉← there is an E(p→)-tree T r(ν0, . . . , νn−1) ⊆ Ap→〈ν0,...,νn−1〉 such that

r_〈fp〈ν0,...,νn−1〉→, T
r(ν0, . . . , νn−1)〉 ∈ PĒ,ε.

Then there is a strong Prikry extension p∗ ≤∗∗ p such that for each 〈ν0, . . . , νn−1〉 ∈
Ap
∗
→ and r ≤ p∗〈ν0,...,νn−1〉←,

r_ p∗〈ν0,...,νn−1〉→ ≤
∗∗ r_〈fp〈ν0,...,νn−1〉→, T

r(ν0, . . . , νn−1)〉.

Definition 4.8. (1) A tree T ⊆ OB(d)n+1, where n < ω, is called d-fat if for
each 〈ν0, . . . , νn〉 ∈ T , νk < νk+1 (k < n), and for each k < n,

∀〈ν0, . . . , νk−1〉 ∈ T ∃i < o(Ē) SucT (ν0, . . . , νk−1) ∈ Ei(d).

As usual we call a tree f -fat if the tree is a dom f -fat for a condition
f ∈ P∗

Ē,ε
, and p-fat if it is an fp-fat for a condition p ∈ PĒ,ε→.

(2) d-fat trees are measure one sets for appropriate measure. To characterize
such a measure a function ι : T → o(Ē), with domain a d-fat tree, is needed
such that for each k ≤ n,

∀〈ν0, . . . , νk−1〉 ∈ T SucT (ν0, . . . , νk−1) ∈ Eι(ν0,...,νk−1)(d).
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Thus define by recursion the product measure Eι(d) on OB(d)n+1, where
ι : T → o(Es) and T is a tree of height n+ 1, as follows:

X ∈ Eι(d) ⇐⇒
{〈ν0, . . . , νn−1〉 ∈ Levn−1(X) | SucX(ν0, . . . , νn−1) ∈ Eι(ν0,...,νn−1)(d)}

∈ Eι�Levn(T )(d),

where we set E() = {〈〉} and consider it a measure on OB(d)0 = {〈〉}. Note
that essentially E〈ι〉(d) = Eι(d). For ι : T → o(Ē), where for each n < ω
T � Levn(T ) is a d-fat tree, the measure Eι(d) on OB(d)<ω is defined by
recursion as follows:

X ∈ Eι(d) ⇐⇒ ∀n < ω Levn(X) ∈ Eι�Levn(T )(d).

The intersection of all the measures on OB(d)n is named E(n)(d), i.e.,

E(n)(d) =
⋂
{Eι(d) | ι : T → o(Ē), T is a d-fat tree of height n},

and the intersection of all the measures on OB(d)<ω is named E(ω)(d), i.e.,

E(ω)(d) =
⋂
{Eι(d) |

ι : T → o(Ē), T � Levn(T ) is a d-fat tree of height n for each n < ω}.

Note that if T is a d-tree then T ∈ E(ω)(d). Hence for each n < ω,
Levn(T ) ∈ E(n+1)(d). Note also that if T is a tree such that T ∈ E(ω)(d),
then there is a subtree S ⊆ T such that S is a d-tree.

For the following parts a notation is needed converting a function with a tree
domain to a sequence, thus the following definition.

Definition 4.9. Assume T is a tree and r : T → P is a function. The function
~r : T → P≤ht(T ) is defined by recursion as follows. For each 〈ν0, . . . , νk〉 ∈ T ,

~r(ν0, . . . , νk) =

{
r(ν0) k = 0,
~r(ν0, . . . , νk−1)_〈r(ν0, . . . , νk)〉 0 < k < ht(T ).

Observe that for ξ < o(Ē), a set X ∈ E(f), where f ∈ P∗
Ē,ε

, can be partititioned,
modulo measure zero set, to three pairwise disjoint subsets X<, X=, and X>, so
that X< ∈

⋂
ξ′<ξ Eξ′(f), X= ∈ Eξ(f), and X> ∈

⋂
ξ<ξ′<o(Ē)Eξ′(f). This can be

done, for example, as follows. Let Y be a set such that for each ξ ≤ ξ′ < o(Ē),

mcξ′(f) ∪ {〈jξ′(ξ), ξ〉} ∈ jξ′(Y ),

and Y � dom f ⊆ X. Then define:

X< = {ν � dom f | ν ∈ Y, ξ /∈ dom ν or (ξ ∈ dom ν and o(ν(κ̄)) < ν(ξ)},
X= = {ν � dom f | ν ∈ Y, ξ ∈ dom ν, o(ν(κ̄)) = ν(ξ)},

and

X> = {ν � dom f | ν ∈ Y, ξ ∈ dom ν, o(ν(κ̄)) > ν(ξ)}.
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Lemma 4.10. Assume p ∈ PĒ,ε, T ⊆ Ap→ is a p→-fat tree, and r : T → PĒ,ε← is
a function such that for each 〈ν0, . . . , νht(T )−1〉 ∈ T ,

~r(ν0, . . . , νht(T )−1) ≤∗∗ p〈ν0,...,νht(T )−1〉←.

Then there is a strong Prikry extension p∗∗ ≤∗ p such p∗← = p← and the set

{p←_ ~r(ν0, . . . , νht(T )−1)_ p〈ν0,...,νht(T )−1〉→ | 〈ν0, . . . , νht(T )−1〉 ∈ T}

is predense below p∗.

Proof. The proof is by recursion on the height of T . We begin with the case n = 0,
i.e., the height of T is one, and proceed to the general case 0 < n < ω, i.e., the
height of T is n+ 1.

The case n = 0: Begin by setting S = AjEξ (r)(mcξ(f
p
→)), where ξ < o(Ē) witnesses

the fp→-fatness of T . The tree satisfies S has its splitting in
⋂
ξ′<ξ Eξ′(f

p
→), thus it

is a good candidate to be the tree in the Prikry extension p∗. However, the tree
S misses measure one sets for measures Eζ with ζ ≥ ξ, so our aim is to fill in the
missing sets. For the duration of the proof let us use the following convention. For a
set X ∈ E(fp→), the sets X<, X=, and X>, are pairwise disjoint, X ⊇ X<∪X=∪X>,
X< ∈

⋂
ξ′<ξ Eξ′(f

p
→), X= ∈ Eξ(fp→), and X> ∈

⋂
ξ<ξ′<o(Ē)Eξ′(f

p
→). We will define

an fp→-tree A in several steps. For each 〈ν0, . . . , νk−1〉 ∈ S we set the successor for
the lower measures as follows:

SucA(ν0, . . . , νk−1)< = SucS(ν0, . . . , νk−1),

SucA(ν0, . . . , νk−1)= = {〈ν〉 ∈ T | 〈ν0, . . . , νk−1〉 ∈ Ar(ν)},

and

SucA(ν0, . . . , νk−1)> = {µ ∈ OB(fp→) | ∀ν < µ

ν ∈ SucA(ν0, . . . , νk−1) =⇒ µ ∈ SucAp(ν)>}.

For the higher measures we set the subtrees as follows.

∀〈ν〉 ∈ SucA(ν0, . . . , νk−1)= A〈ν0,...,νk−1,ν〉 = Ap→〈ν〉 ,

and

∀〈µ〉 ∈ SucA(ν0, . . . , νk−1)> A〈ν0,...,νk−1,µ〉 =
⋂
{Ap〈ν,µ〉 | 〈ν, µ〉 ∈ A

p→}.

Set p∗ = p←
_〈fp→, A〉. We claim that p∗ is as demanded. Thus assume that

q ≤ p∗→. Thus there is 〈ν0, . . . , νk−1〉 ∈ Ap
∗
→ such that q ≤∗ p∗→〈ν0,...,νk−1〉. We split

the handling according to the whereabouts of 〈ν0, . . . , νk−1〉:
Subcase 〈ν0, . . . , νk−1〉 ∈ S: Set X = {〈ν〉 ∈ T | 〈ν0, . . . , νk−1〉 ∈ Ar(ν)}.

By the definition of S, X ∈ Eξ(fp→). Choose some 〈ν〉 ∈ X. Then fq ≤∗

fr(ν)〈ν0,...,νk−1〉 _ fp→〈ν〉→.
Subcase l < k, 〈ν0, . . . , νl−1〉 ∈ S, and 〈νl〉 ∈ SucA(ν0, . . . , νl−1)=: By the

construction 〈νl〉 ∈ T , 〈ν0, . . . , νl−1〉 ∈ Ar(νl), and 〈νl+1, . . . , νk−1〉 ∈ A〈νl〉. Thus
fq ≤∗ fr(νl)〈ν0,...,νl−1〉 _ fp→〈νl〉→〈νl+1,...,νk−1〉.

Subcase l < k, 〈ν0, . . . , νl−1〉 ∈ S, and 〈νl〉 ∈ SucA(ν0, . . . , νl−1)>: Then for each
ν < νl such that 〈ν〉 ∈ SucA(ν0, . . . , νl−1)=, we have 〈ν0, . . . , νl−1〉 ∈ Ar(ν) and
〈ν, νl, . . . , νk−1〉 ∈ Ap→ . Thus fq ≤∗ fr(ν)

〈ν0,...,νl−1〉
_ fp→〈ν〉→〈νl+1,...,νk−1〉.
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The case 0 < n < ω: By recursion there is a strong Prikry extension q ≤∗∗ p→
such that the set

{p←_ ~r(ν0, . . . , νn−1)_ p〈ν0,...,νn−1〉→ | 〈ν0, . . . , νn−1〉 ∈ T}

is predense below p←
_ q. Again by recursion, for each 〈ν0, . . . , νn−1〉 ∈ T there is

a strong Prikry extension qν0,...,νn−1 ≤∗∗ q such that the set

{p←_ ~r(ν0, . . . , νn−1, νn)_ p〈ν0,...,νn−1,νn〉→ | 〈ν0, . . . , νn−1, νn〉 ∈ T}

is pre-dense below p←
_ qν0,...,νn−1 . Construct a strong Prikry extension q∗ ≤∗∗ q

such that q〈ν0,...,νn−1〉→ ≤∗∗ qν0,...νn−1 for each 〈ν0, . . . , νn−1〉 ∈ T . Then

{p←_ ~r(ν0, . . . , νn−1, νn)_ p〈ν0,...,νn−1,νn〉→ | 〈ν0, . . . , νn−1, νn〉 ∈ T}

is pre-dense below p←
_ q∗. Thus by setting p∗ = p←

_ q∗ we are done. �

Recall Shelah’s definition of a generic condition over an elementary submodel:
Assume χ is large enough, N ≺ Hχ is an elementary submodel, and P ∈ N is a
forcing notion. A condition p ∈ P is called 〈N,P 〉-generic if for each dense open
subset D ∈ N of P ,

p 
P
pĎ ∩G˜ ∩ Ň 6= ∅q,

where G˜ is the name of the P -generic object.

Let N ≺ Hχ be an elementary submodel such that |N | = κ, N ⊃ N<κ, P∗
Ē,ε
∈ N ,

and f ∈ P∗
Ē,ε
∩N . Let 〈Dξ | ξ < κ〉 be an enumeration of the dense open subsets of

P∗
Ē,ε

appearing in N . Since N is closed under < κ sequences, and P∗
Ē,ε

is κ+-closed,
one can construct by induction a ≤∗-decreasing sequence below f , 〈fξ | ξ < κ〉,
such that fξ+1 ∈ Dξ ∩ N . Let f∗ =

⋃
{fξ | ξ < κ}. It is clear that f∗ is an

〈N,P∗
Ē,ε
〉-generic condition. In fact the condition f∗ satisifes a stronger property

than 〈N,P∗
Ē,ε
〉-genericity. I.e., it satisifes that for each D ∈ N a dense open subset

of P∗
Ē,ε

there is a weaker condition g ≥∗ f∗ such that g ∈ D ∩ N . A condition
satisifying this stronger property is called 〈N,P∗

Ē,ε
〉-completely generic.

In the context of the forcing notions PĒ,ε and P∗
Ē,ε

we have a yet stronger prop-
erty. In the forcing P∗

Ē,ε
the conditions f and f〈ν〉 are incompatible. However, we

force with PĒ,ε, thus PĒ,ε-conditions with Cohen parts f and f〈ν〉 parts will appear
in a PĒ,ε-generic filter.

Thus we define a condition f∗ ∈ P∗
Ē,ε

to be 〈N,P∗
Ē,ε
〉-fully generic if there is an

f∗-tree A such that for each 〈ν0, . . . , νn−1〉 ∈ A and each D ∈ N a dense open
subset of P∗

Ē,ε
below f〈ν0�dom f,...,νn�dom f〉→ there is a condition g ≥∗ f∗〈ν0,...,νn〉→

such that g ∈ D ∩ N . The construction of an 〈N,P∗
Ē,ε
〉-fully generic condition is

done like the construction of the 〈N,P∗
Ē,ε
〉-completely generic condition, one just

take more dense open subsets appearing in N into the enumeration.

Lemma 4.11. Assume p ∈ PĒ,ε→ and D is a dense open subset of PĒ,ε. Then
there are a Prikry extension p∗ ≤∗ p, a p∗-fat tree T ⊆ Ap∗ , and a function r : T →
PĒ,ε←, such that for each 〈ν0, . . . , νht(T )−1〉 ∈ T ,

~r(ν0, . . . , νht(T )−1) ≤∗∗ p∗〈ν0,...,νht(T )−1〉←,
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and

~r(ν0, . . . , νht(T )−1)_ p∗〈ν0,...,νht(T )−1〉→ ∈ D.

Proof. The proof is done in two stages. In the first stage we prove that given a
condition p ∈ PĒ,ε→ and n < ω, there is a Prikry extension p∗ ≤∗ p such that either

∀〈ν0, . . . , νn−1〉 ∈ Ap
∗
∀q ≤∗ p∗〈ν0,...,νn−1〉 q /∈ D,

or there are a p∗-fat tree T ⊆ Ap
∗

of height n and a function r : T → PĒ,ε← such
that for each 〈ν0, . . . , νn−1〉 ∈ T ,

~r(ν0, . . . , νn−1) ≤∗∗ p∗〈ν0,...,νn−1〉←,

and

~r(ν0, . . . , νn−1)_ p∗〈ν0,...,νn−1〉→ ∈ D.

In the second stage we pick one Prikry extension satisfying the above for all n < ω,
and show by contradiction that the first case above cannot hold for all n < ω.

Stage I. The proof is by recursion on ht(T ). We begin with trees of height
one (the case n = 0) and proceed to trees of arbitrary height afterwards (the case
0 < n < ω).

The case n = 0. Let χ be large enough, N ≺ Hχ be an elementary submodel
such that |N | = κ, N ⊃ N<κ, N ∩ κ+ ∈ κ+, PĒ,ε, D ∈ N , and p ∈ PĒ,ε→ ∩N . Let
f∗ ≤∗ fp be an 〈N,P∗

Ē,ε
〉-fully generic condition. Let A be a tree witnessing the

〈N,P∗
Ē,ε
〉-full genericity of f∗. For each 〈ν0〉 ∈ A set

D∈〈ν0〉 = {q ≤∗ p〈ν0〉→ | dom fq ⊇ dom ν0, ∃s ≤∗ 〈f∗, A〉〈ν0〉← s_ q ∈ D}.

Since 〈f∗, A〉〈ν0〉← ∈ N , thus D∈〈ν0〉 ∈ N . Now let D∗〈ν0〉 be D′∗〈ν0〉 ∪D
′′∗
〈ν0〉, where

D′∗〈ν0〉 = {fq ≤∗ fp〈ν0�dom fp〉→ | q ∈ D
∈
〈ν0〉},

and

D′′∗〈ν0〉 = {g ≤∗ fp〈ν0�dom fp〉→ | dom g ⊇ dom ν0, ∀g′ ∈ D′∗〈ν0〉 g ⊥ g
′}.

Observe that the sets D′∗〈ν0〉, D
′′∗
〈ν0〉 are open subsets of P∗

Ē,ε
, and the sets D∗〈ν0〉 are

dense open subsets of P∗
Ē,ε

below fp〈ν0�dom fp〉→. Moreover, all of these sets are in N .
Thus in particular f∗〈ν0〉→ ∈

⋂
{D∗〈ν0〉 | 〈ν0〉 ∈ A}. We split the handling according

to the whereabouts of the condition f∗:
(1) By removing a measure zero set from the tree A we have that for each 〈ν0〉 ∈

A, f∗〈ν0〉→ ∈ D
′′∗
〈ν0〉: Set p∗ = 〈f∗, A〉. Consider the condition q ≤∗ p∗〈ν0〉. By

the definition of the order ≤∗, q← ≤∗ 〈f∗, A〉〈ν0〉← and q→ ≤∗ p〈ν0〉→. If
q ∈ D then we have fq→ ∈ D′∗〈ν0〉. Thus fq→ ⊥ f∗〈ν0〉→. Contradiction. Thus
we get that for each 〈ν0〉 ∈ Ap

∗
and q ≤∗ p∗〈ν0〉, q /∈ D.

(2) There exists an f∗-fat tree T ′ ⊆ A of height one such that for each 〈ν0〉 ∈ T ′,
f∗〈ν0〉→ ∈ D

′∗
〈ν0〉: First let q : T ′ → PĒ,ε→ be a witnessing function for the

satisfcation of the formula. That is for each 〈ν0〉 ∈ T ′, fq(ν0) = f∗〈ν0〉→ and
q(ν0) ∈ D〈ν0〉. Then let s : T ′ → PĒ,ε← be a witnessing function for the
definition of the set D∈〈ν0〉, i.e., for each 〈ν0〉 ∈ T ′, s(ν0) ≤∗ 〈f∗, A〉〈ν0〉← and
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s(ν0)_ q(ν0) ∈ D. Set g′ = f jEξ (s)(mcξ(f
∗)), where ξ < o(Ē) witnesses that

T ′ is an f∗-fat tree of height one. Then set g = {〈ᾱ, g′(ᾱ � ξ)〉 | ᾱ ∈ D, ᾱ �
ξ ∈ dom g′}. Observe that g ≤∗ f∗. Construct a condition p∗ ≤∗ 〈f∗, A〉
such that fp

∗
= g, and for each 〈ν0〉 ∈ Ap

∗
such that 〈ν0 � dom f∗〉 ∈

T ′, p∗〈ν0〉→ ≤
∗ q(ν0 � dom f∗). Set T = {〈ν0〉 ∈ Ap

∗ | 〈ν0 � dom f∗〉 ∈

T ′, fs(ν0�dom f∗) = f
p∗〈ν0〉← }, and observe that T is a p∗-fat tree of height one

with the same witness ξ as the tree T ′. Define a function r : T → PĒ,ε←
by choosing a condition r(ν0) such that r(ν0) ≤∗∗ s(ν0 � dom f∗), p∗〈ν0〉←.
All in all we have that for each 〈ν0〉 ∈ T ,

r(ν0)_ p∗〈ν0〉→ ≤
∗ s(ν0 � dom f∗)_ q(ν0 � dom f∗) ∈ D,

thus by the openess of D,

r(ν0)_ p∗〈ν0〉→ ∈ D,

by which we are done.
The case 0 < n < ω: Let χ be large enough, N ≺ Hχ be an elementary submodel

such that |N | = κ, N ⊃ N<κ, N ∩ κ+ ∈ κ+, PĒ,ε, D ∈ N , and p ∈ PĒ,ε→ ∩N . Let
f∗ ≤∗ fp be an 〈N,P∗

Ē,ε
〉-fully generic condition. Let A be a tree witnessing the

〈N,P∗
Ē,ε
〉-full genericity of P∗

Ē,ε
. For each 〈ν0〉 ∈ A the set

D〈ν0〉 = {q ≤ p〈ν0�dom fp〉→ | dom fq ⊇ dom ν0, ∃s ≤ 〈f∗, A〉〈ν0〉← s_ q ∈ D}

is a dense open subset of PĒ,ε/p〈ν0�dom fp〉→. By recursion the set

D∈〈ν0〉 = {q ≤∗ p〈ν0�dom fp〉→ | dom fq ⊇ dom ν0,(
∀〈ν1, . . . , νn〉 ∈ Aq ∀q∗ ≤∗ q〈ν1,...,νn〉 q

∗ /∈ D〈ν0〉
)

or(
∃T ⊆ Aq a q-fat tree of height n ∃r : T → PĒ,ε←

~r(ν1, . . . , νn) ≤∗∗ q〈ν1,...,νn〉←, ~r(ν1, . . . , νn)_ q〈ν1,...,νn〉→ ∈ D〈ν0〉
)
}

is a dense open subset of 〈PĒ,ε/p〈ν0�dom fp〉→,≤∗〉. Thus the set D∗〈ν0〉 = {fq | q ∈
D∈〈ν0〉} is a dense open subset of P∗

Ē,ε
below f

p〈ν0�dom fp〉
→ . Thus for each 〈ν0〉 ∈ A,

f∗〈ν0〉 ∈ D∗〈ν0〉. By the definition of the sets D〈ν0〉 and D∈〈ν0〉, there is a function
q : A→ PĒ,ε→ such that for each 〈ν0〉 ∈ A, we have fq(ν0) = f∗〈ν0〉→ and either

∀〈ν1, . . . , νn〉 ∈ Aq(ν0) ∀q∗ ≤∗ q(ν0)〈ν1,...,νn〉 q
∗ /∈ D,

or there are is a condition s ≤ 〈f∗, A〉〈ν0〉←, an f∗-fat tree T of height n, and a
function r : T → PĒ,ε← such that for each 〈ν1, . . . , νn〉 ∈ T ,

~r(ν1, . . . , νn) ≤∗∗ q(ν0)〈ν1,...,νn〉←,

and

s_ ~r(ν1, . . . , νn)_ q(ν0)〈ν1,...,νn〉→ ∈ D.

The crucial point is the possibility to choose a Prikry extension s ≤∗ 〈f∗, A〉〈ν0〉←
on a measure one set. Thus one and only one of the following can hold.

(1) For each 〈ν0〉 ∈ A,

∀〈ν1, . . . , νn〉 ∈ Aq(ν0) ∀s∗ ≤∗ 〈f∗, A〉〈ν0〉← ∀q
∗ ≤∗ q(ν0)〈ν1,...,νn〉 s

∗_ q∗ /∈ D.
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In this case we define the condition p∗ so as to satisfy p∗ ≤∗ p and
p∗〈ν0〉→ ≤

∗∗ q(ν0) for each 〈ν0〉 ∈ A. We get that for each 〈ν0, ν1, . . . , νn〉 ∈
Ap
∗

and each q ≤∗ p∗〈ν0,ν1,...,νn〉, q /∈ D, by which the current case was
proved.

(2) There are an f∗-fat tree S ⊆ A of height one, a function s : S → PĒ,ε←,
for each 〈ν0〉 ∈ S there are an f∗-fat tree T ν0 of height n, and a function
rν0 : T ν0 → PĒ,ε← such that for each 〈ν1, . . . , νn〉 ∈ T ν0 ,

s(ν0) ≤∗ 〈f∗, A〉〈ν0〉←,

~rν0(ν1, . . . , νn) ≤∗∗ q(ν0)〈ν1,...,νn〉←,

and

s(ν0)_ ~rν0(ν1, . . . , νn)_ q(ν0)〈ν1,...,νn〉→ ∈ D.

Set g′ = f jEξ (s)(mcξ(f
∗)), where ξ < o(Ē) witnesses that S is an f∗-fat

tree of height one. Then set g = {〈ᾱ, g′(ᾱ � ξ)〉 | ᾱ ∈ D, ᾱ � ξ ∈ dom g′}.
Observe that g ≤∗ f∗. Construct a condition p∗ ≤∗ 〈f∗, A〉 such that
fp
∗

= g, and for each 〈ν0〉 ∈ Ap
∗

such that 〈ν0 � dom f∗〉 ∈ S, p∗〈ν0〉→ ≤
∗

q(ν0 � dom f∗). Now construct an f∗-fat tree of height n+ 1 as follows.

Lev0(T ) = {〈ν0〉 ∈ Ap
∗
| 〈ν0 � dom f∗〉 ∈ S, fs(ν0�dom f∗) = f

p∗〈ν0〉← }
and

T〈ν0〉 = {〈ν1, . . . , νk〉 ∈ Ap
∗

〈ν0〉 | 1 ≤ k ≤ n,

〈ν1 � dom f∗, . . . , νk � dom f∗〉 ∈ T ν0�dom f∗}.
Define a function r : T → PĒ,ε← so as to satisfy

r(ν0) ≤∗∗ s(ν0 � dom f∗), p∗〈ν0〉←,

and

~r(ν0, ν1, . . . , νn) ≤∗ ~rν0�dom f∗(ν1 � dom f∗, . . . νn � dom f∗).

All in all we have that for each 〈ν0, ν1, . . . , νn〉 ∈ T ,

~r(ν0, ν1, . . . , νn)_ p∗〈ν0,ν1,...,νn〉→ ≤
∗

s(ν0 � dom f∗)_ ~rν0�dom f∗(ν1 � dom f∗, . . . νn � dom f∗)_

q(ν0 � dom f∗)〈ν1�dom f∗,...νn�dom f∗)〉→ ∈ D,
thus by the openess of D,

~r(ν0, . . . νn)_ p∗〈ν0,...,νn〉→ ∈ D,
by which we are done.

Stage II. Assume p ∈ PĒ,ε→. By invocation of stage I for ω-many times con-
struct a condition p∗ ≤∗ p such that for each n < ω either

∀〈ν0, . . . , νn−1〉 ∈ Ap
∗
∀q ≤∗ p∗〈ν0,...,νn−1〉 q /∈ D,

or there are a p∗-fat tree T of height n, and a function r : T → PĒ,ε← such that for
each 〈ν0, . . . , νn−1〉 ∈ T ,

~r(ν0, . . . , νn−1) ≤∗∗ p∗〈ν0,...,νn−1〉←,
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and

~r(ν0, . . . , νn−1)_ p∗〈ν0,...,νn−1〉→ ∈ D.

Towards a contradiction let us assume that for each n < ω we have

∀〈ν0, . . . , νn−1〉 ∈ Ap
∗
∀q ≤∗ p∗〈ν0,...,νn−1〉 q /∈ D.

This means that for each q ≤ p∗, q /∈ D, contradiction to the density of D. Thus
we must have a p∗-fat tree T and a function r : T → PĒ,ε← of height n < ω such
that for each 〈ν0, . . . , νn−1〉 ∈ T ,

~r(ν0, . . . , νn−1) ≤∗∗ p∗〈ν0,...,νn−1〉←,

and

~r(ν0, . . . , νn−1)_ p∗〈ν0,...,νn−1〉→ ∈ D,

by which we are done. �

Claim 4.12. The forcing 〈PĒ,ε,≤,≤∗〉 is of Prikry type.

Proof. Assume p ∈ PĒ,ε and let σ be a formula in the PĒ,ε-forcing language. We
will construct by induction the sequence 〈sξ, qξ | ξ < λ〉 where {sξ | ξ < λ} is a
maximal anti-chain below p← (and thus λ < κ), and 〈qξ | ξ < λ〉 is a ≤∗-decreasing
sequence below p→ such that sξ _ qξ ‖ σ as follows.

Assume 〈sξ′ , qξ′ | ξ′ < ξ〉 were defined. If {sξ′ | ξ′ < ξ} is a maximal anti-
chain below p← then we are done and we set λ to be ξ. Otherwise choose a
condition s′ ≤ p← such that s′ is incompatible with each of the conditions sξ′
(ξ′ < ξ). Then choose a condition q′ such that q′ ≤∗ qξ′ for each ξ′ < ξ. The set
D∈ = {q ≤ q′ | ∃s ≤ s′ s_ q ‖ σ} is a dense open subset of PĒ,ε below q′. By 4.11
there are a condition q′′ ≤∗ q′, a q′′-fat tree T ⊆ Aq′′ , and a function r with domain
T , such that for each 〈ν0, . . . , νht(T )−1〉 ∈ T ,

~r(ν0, . . . , νht(T )−1) ≤∗∗ q′′〈ν0,...,νht(T )−1〉←,

and

~r(ν0, . . . , νht(T )−1)_ q′′〈ν0,...,νht(T )−1〉→ ∈ D
∈.

By removing a measure zero set from T we get that there is a condition sξ ≤ s′

such that for each 〈ν0, . . . , νht(T )−1〉 ∈ T ,

sξ
_ ~r(ν0, . . . , νht(T )−1)_ q′′〈ν0,...,νht(T )−1〉→ ‖ σ.

Remvoing another measure zero set from T yields that for each 〈ν0, . . . , νht(T )−1〉 ∈
T ,

sξ
_ ~r(ν0, . . . , νht(T )−1)_ q′′〈ν0,...,νht(T )−1〉→ 
 φ,

where φ is ¬σ or σ. Invocation of 4.10 yields a condition qξ ≤∗∗ q′′ such that

{sξ _ ~r(ν0, . . . , νht(T )−1)_ q′′〈ν0,...,νht(T )−1〉→ | 〈ν0, . . . , νht(T )−1〉 ∈ T}

is pre-dense below sξ
_ qξ. Thus we get sξ _ qξ ‖ σ.
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When the induction terminates choose a condition q∗ such that q∗ ≤∗ qξ for each
ξ < λ. Of course we have sξ _ q∗ ‖ σ for each ξ < λ. Let X0 and X1 be a partition
of {sξ | ξ < λ} defined as follows:

X0 = {sξ | ξ < λ, sξ
_ q∗ 
 ¬σ},

and

X1 = {sξ | ξ < λ, sξ
_ q∗ 
 σ}.

By recursion there is a direct extension s∗ ≤∗ p← such that s∗ ‖ pX̌0 ∩ G˜← 6= ∅q,
where G˜← is the name of the PĒ,ε/p←-generic filter. Now, if s∗ 
 pX̌0 ∩G˜← 6= ∅q
then s∗_ q∗ 
 ¬σ. If s∗ 
 pX̌0 ∩ G˜← = ∅q then (since {sξ | ξ < λ} is a maximal

anti-chain below p←) s∗ 
 pX̌1∩G˜← 6= ∅q, thus s∗_ q∗ 
 σ. Either way by setting

p∗ = s∗_ q∗ we get p∗ ‖ σ. �

Lemma 4.13. Assume χ is large enough, and N ≺ Hχ is an elementary submodel
such that |N | = κ, N ⊃ N<κ, N ∩ κ+ ∈ κ+, PĒ,ε ∈ N , and p ∈ PĒ,ε ∩ N . Then
there is a Prikry extension p∗ ≤∗ p, satisfying p∗← = p←, which is 〈N,PĒ,ε〉-generic.

Proof. Let f∗ be an 〈N,P∗
Ē,ε
〉-generic condition, and A be an f∗-tree witnessing the

〈N,P∗
Ē,ε
〉-genericity of f∗. We will get an 〈N,PĒ,ε〉-generic condition by removing

a measure zero set from A. We do this as follows. Let 〈Dξ | ξ < κ〉 be an
enumeration of the dense open subsets of PĒ,ε appearing in N . For each n < ω and
〈ν0, . . . , νn−1〉 ∈ A set

D∗〈ν0,...,νn−1〉 = {f ≤∗ fp→ | ∃q ∈ PĒ,ε fq = f〈ν0,...,νn−1〉→

∀ξ < νn−1(κ) q 
PĒ,ε/p〈ν0,...,νn−1〉→
pDξ〈ν0,...,νn−1〉 ∩G˜ 6= ∅q},

(in the above formula G˜ is used as the name of a PĒ,ε/p〈ν0,...,νn−1〉→-generic filter)

where for each ξ < κ,

Dξ〈ν0,...,νn−1〉 = {s ≤ p〈ν0,...,νn−1〉→ | ∃r ≤ p〈ν0,...,νn−1〉← r_ s ∈ Dξ}.
Since the set Dξ〈ν0,...,νn−1〉 is a dense open subset of PĒ,ε/p〈ν0,...,νn−1〉→, the set
D∗〈ν0,...,νn−1〉 is a dense open subset of P∗

Ē,ε
below fp→ . Since A ⊂ N , both sets

Dξ〈ν0,...,νn−1〉 and D∗〈ν0,...,νn−1〉 are in N . Thus by the construction of f∗ we can
choose for each 〈ν0, . . . , νn−1〉 ∈ A a condition q(ν0, . . . , νn−1) such that for some
f ∈ D∗〈ν0,...,νn−1〉 ∩N we have f ≥∗ f∗ and fq(ν0,...,νn−1) = f〈ν0,...,νn−1〉→.

Use 4.7 to construct a strong Prikry extension p∗ ≤∗∗ 〈f∗, A〉 satisfying for
each 〈ν0, . . . , νn−1〉 ∈ Ap

∗
, p∗〈ν0,...,νn−1〉→ ≤

∗ q(ν0, . . . , νn−1). We claim that p∗ is
〈N,PĒ,ε〉-generic. To show this let D ∈ N be a dense open subset of PĒ,ε, and G
be PĒ,ε-generic with p∗ ∈ G. Let ζ < κ be such that D = Dζ . The set

{p∗〈ν0,...,νn−1〉 | n < ω, 〈ν0, . . . , νn−1〉 ∈ Ap
∗
, νn−1(κ) > ζ}

is a predense subset of PĒ,ε below p∗. Thus we will be done if we show that
p∗〈ν0,...,νn−1〉 


pĎζ∩G˜ ∩Ň 6= ∅q when νn−1(κ) > ζ. So assume that 〈ν0, . . . , νn−1〉 ∈

Ap
∗

and νn−1(κ) > ζ. By the construction of p∗ we know that

p∗〈ν0,...,νn−1〉→ ≤
∗ q(ν0, . . . , νn−1)
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while

q(ν0, . . . , νn−1) 
PĒ,ε/p〈ν0,...,νn−1〉→
pĎζ〈ν0,...,νn−1〉 ∩G˜ ∩ Ň 6= ∅q.

Thus p∗〈ν0,...,νn−1〉→ 
PĒ,ε/p〈ν0,...,νn−1〉→
pĎζ〈ν0,...,νn−1〉 ∩ G˜ ∩ Ň 6= ∅q. Factor G

to G← ∗ G→ where G→ is a PĒ,ε/p〈ν0,...,νn−1〉→-generic filter over V , and G← is
PĒ,ε/p〈ν0,...,νn−1〉←-generic filter over V [G→]. In V [G] define the set D′ = {r ≤
p〈ν0,...,νn−1〉← | ∃s ∈ Dζ〈ν0,...,νn−1〉 ∩G→, r_ s ∈ Dζ}. Observe that D′ is a dense
open subset of PĒ,ε/p〈ν0,...,νn−1〉← and trivially D′ ⊂ N . Moreover, D′ ∈ N [G]
where N [G] = {ȧ[G] | ȧ ∈ N is a PĒ,ε-name} ≺ H

V [G]
χ . Thus D′ ∩ G← ∩ N 6= ∅.

That is, there are r ∈ G← ∩N and s ∈ G→ ∩N such that r_ s ∈ Dζ ∩G∩N . �

A properness type argument using the above lemma yields:

Corollary 4.14. In a PĒ,ε-generic extension (κ+)V is preserved.

Following the roadmap appearing after 4.5 one gets:

Corollary 4.15. The forcing PĒ,ε preserves all cardinals.

Proof. By 4.6 and 4.14 the cardinals above κ are preserved. Let λ < κ be car-
dinal. Choose a condition p ∈ PĒ,ε such that p←→ is above λ. Factor PĒ,ε to
PĒ,ε/p←← × PĒ,ε/(p←→_ p→). The λ-closure of 〈PĒ,ε/(p←→_ p→),≤∗〉 together
with the Prikry property yield that a witness to a possible collpase of λ should be
in V PĒ,ε/p←← while by recursion there is no such witness. �

Definition 4.16. Let G be PĒ,ε-generic. For each κ ≤ α < ε,

Gᾱ =
⋃
{fp→(ᾱ) | p ∈ G, ᾱ ∈ dom fp→},

Cᾱ = {ν̄0 | ν̄ ∈ Gᾱ}.

It is evident that C κ̄ is a club. Density arguments shows that for ᾱ 6= β̄,
Cᾱ 6= C β̄ . Taking into consideration the number of anti-chains we get:

Corollary 4.17. 
PĒ,ε
p2κ = |ε|q.

Claim 4.18. Assume κ ≤ α < ε. Then

ot(Cᾱ) =

{
ωβ(in ordinal exponentation) o(ᾱ) = β < κ,

κ o(ᾱ) ≥ κ.

5. Properties of κ in V PĒ,ε related to cf(o(Ē))

Claim 5.1. If cf(o(Ē)) = 1, then 
PĒ,ε
p cf κ = ωq.

Proof. Let ζ < o(Ē) be such that o(Ē) = ζ + 1. Choose a set X ∈ Eζ({κ̄}) \⋃
ζ′<ζ Eζ′({κ̄}). In V [G] define by induction ν̄0 = minGκ̄, and ν̄n+1 = min{ν̄ ∈

Gκ̄ | ν̄ > ν̄n, ν̄ ∈ X}. Then 〈ν̄n0 | n < ω〉 is a cofinal sequence in κ. �

The following lemma shows that short enough new sequences into κ are, in
general, bounded. This means that they are generated in forcing smaller than PĒ,ε.

Lemma 5.2. Assume η is a cardinal, ω ≤ η < min
(
κ, cf(o(Ē))

)
, cf(o(Ē)) 6= κ,

and p 
 pḟ : η̌ → κ̌q. Then there is a Prikry extension p∗ ≤∗ p such that p∗← = p←
and p∗ 
 pḟ is bounded in κ̌q.
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Proof. We will construct by induction the sequence 〈pξ, F ξ : T ξ → κ, Iξ | ξ < η〉
such that for each ξ < η:

(1) ∀ξ1 < ξ2 < η pξ2 ≤∗ pξ1 ≤∗ p→;
(2) T ξ is a pξ+1-fat tree of characteristic Iξ, i.e., for each k < ht(T ξ) and
〈ν0, . . . , νk−1〉 ∈ T ξ,

SucT ξ(ν0, . . . , νk−1) ∈ EIξ(ν0,...,νk−1)(p
ξ+1);

(3) For each 〈ν0, . . . , νht(T ξ)−1〉 ∈ T ξ there is a condition

r(ν0, . . . , νht(T ξ)−1) ≤∗∗ pξ+1
〈ν0,...,νht(Tξ)−1〉←

such that

r(ν0, . . . , νht(T ξ)−1)_ pξ+1
〈ν0,...,νht(Tξ)−1〉→


 pḟ(ξ) < F ξ(ν0, . . . , νht(T ξ)−1)q;

(4) ran(Iξ) is bounded in o(Ē).
The induction is done as follows.
ξ = 0: Set p0 = p→.
ξ ≤ η is limit: Thus 〈pξ′ | ξ′ < ξ〉 is defined to be a ≤∗-decreasing sequence. Since

〈PĒ,ε,≤∗〉 is κ-closed there is a condition pξ ∈ PĒ,ε such that ∀ξ′ < ξ pξ ≤∗ pξ′ .
ξ + 1 ≤ η: Thus pξ was constructed. Set

D = {q ≤ pξ | ∃ζ < κ p←
_ q 
 pḟ(ξ̌) < ζ̌q}.

First we note that D is a dense open subset of PĒ,ε/p→ below pξ. To show the
density take a condition q ∈ PĒ,ε/p→. By factoring PĒ,ε/p to PĒ,ε/p→ × PĒ,ε/p←
we get a condition r ≤PĒ,ε/p→ q and a PĒ,ε/p←-name τ̇ such that r 
PĒ,ε/p→
pḟ(ξ) = τ̇q and 
PĒ,ε/p←

pτ̇ < κq. Since |PĒ,ε/p←| < κ there is a set A ∈ Pκ κ
such that 
PĒ,ε/p←

pτ̇ ∈ Ǎq. By the regularity of κ, ζ = supA < κ. Thus we have
p←

_ r 
 pḟ(ξ̌) < ζ̌q.
By 4.11 and 4.10 there are a condition pξ+1 ≤∗ pξ and a pξ+1-fat tree T ξ such

that for each 〈ν0, . . . , νht(T ξ)−1〉 ∈ T ξ there is a condition

r(ν0, . . . , νht(T ξ)−1) ≤∗∗PĒ,ε/p← pξ+1
〈ν0,...,νht(Tξ)−1〉←

such that

∀〈ν0, . . . , νht(T ξ)−1〉 ∈ T ξ r(ν0, . . . , νht(T ξ)−1)_ pξ+1
〈ν0,...,νht(Tξ)−1〉→

∈ D,(*)

and

{r(ν0, . . . , νht(T ξ)−1)_ pξ+1
〈ν0,...,νht(T ′ξ)−1〉→

| 〈ν0, . . . , νht(T ξ)−1〉 ∈ T ξ}

is predense below pξ+1. Define a function F ξ : T ξ → κ witnessing (*), i.e.,

∀〈ν0, . . . , νht(T ξ)−1〉 ∈ T ξ p←_ r(ν0, . . . , νht(T ξ)−1)_ pξ+1
〈ν0,...,νht(Tξ)−1〉→




pḟ(ξ̌) < F ξ(ν0, . . . , νht(T ξ)−1)q.

Let Iξ be the characteristic function of T ξ. If cf(o(Ē)) > κ then ran Iξ is trivially
bounded in o(Ē). If cf(o(Ē)) < κ then using the κ-completeness of the measures
at hand we can remove a measure zero set from T ξ so that ran Iξ will be bounded
in o(Ē).
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At this point the induction has terminated. Choose an ordinal ζ < o(Ē) such
that ran Iξ ⊂ ζ for each ξ < η. Choose a set A ∈ Eζ(pη) \

⋂
ζ′<ζ Eζ′(p

η). Let us fix
some ν ∈ A. Then pη〈ν〉 ⊥ pη〈ν0,...,νht(Tξ)−1〉

whenever 〈ν0, . . . , νht(T ξ)−1〉 � ν. This
means that

p←
_ pη〈ν〉 


p ran ḟ ⊆ X̌q,

where

X = {F ξ(ν0, . . . , νht(T ξ)−1) | ξ < η, 〈ν0, . . . , νht(T ξ)−1〉 ∈ T ξ, νht(T ξ)−1 < ν}.

Since |X| < κ, supX < κ. Thus p←_ pη〈ν〉 

pḟ is bounded in κq. This is true for

arbitrary ν ∈ A. That is

∀ν ∈ A p←
_ pη〈ν〉 


pḟ is bounded in κq.

Use 4.10 to get a Prikry extension p∗ ≤∗∗ pη such that {pη〈ν〉 | ν ∈ A} is predense

below p∗. p←_ p∗ 
 pḟ is bounded in κq. �

Corollary 5.3. If ω ≤ cf(o(Ē)) < κ then 
PĒ,ε
p cf κ = cf(o(Ē))q.

Proof. Since cf(o(Ē)) < κ, lemma 5.2 implies 
 p cf(κ) ≥ cf(o(Ē))q. Thus we
are left to exhibit a sequence witnessing 
 p cf(κ) = cf(o(Ē))q. Fix an increas-
ing continuous sequence 〈ζξ | ξ < cf(o(Ē))〉 cofinal in o(Ē). Choose a family
of pairwise disjoint sets {Aξ | ξ < cf(o(Ē))} such that for each ξ < cf(o(Ē)),
Aξ ∈

⋂
ζξ≤ζ<ζξ+1

Eζ({κ̄}). In V [G] set for each ξ < cf(o(Ē)), ν̄ξ = min{ν̄ ∈ Gκ̄ |
ν̄ ∈ Aξ}. Then 〈ν̄ξ0 | ξ < cf(o(Ē)〉 is cofinal in κ. �

Corollary 5.4. If cf(o(Ē)) > κ then 
PĒ,ε
pκ is regularq.

Proof. Since cf(o(Ē)) > κ, lemma 5.2 implies the corollary at once. �

We deal now with the case not covered by lemma 5.2, that is, when cf(o(Ē)) = κ.

Claim 5.5. If cf(o(Ē)) = κ then 
PĒ,ε
p cf κ = ωq.

Proof. Fix an increasing continuous sequence 〈ζξ | ξ < κ〉 cofinal in o(Ē). Choose
a family of pairwise disjoint sets {Aξ | ξ < κ} such that for each ξ < κ, Aξ ∈⋂
ζξ≤ζ<ζξ+1

Eζ({κ}). In V [G] construct by induction the sequence 〈ν̄n | n < ω〉 as
follows: ν̄0 = minGκ̄, and for each n < ω, ν̄n+1 = min{ν̄ ∈ Gκ̄ | ν̄ ∈ Aν̄n0 }. Then
〈ν̄n0 | n < ω〉 is cofinal in κ. �

As is usual with Radin forcing, some form of repeat point is needed in order
to preserve measurability. The following definition seems to be enough for this.
It is followed by a technical lemma containing the machinery needed in order to
construct a measure.

Definition 5.6. An ordinal ζ < o(Ē) is called a repeat point of Ē if for each
d ∈ Pκ+ D and set X ∈

⋂
ξ<ζ Eξ(d), X is in E(d).

Lemma 5.7. Assume ζ < o(Ē) is a repeat point of Ē, p ∈ PĒ,ε is a condition, and
Ẋ is a PĒ,ε-name such that p 
 pẊ ⊆ κ̌q. Then there is an extension q ≤ p such
that

q← ≤ p←,
q→ ≤∗ p→,
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and

jEζ (q)〈mcζ(q→)〉 ‖jEζ (PĒ,ε)
pκ̌ ∈ jEζ (Ẋ)q.

Proof. Assume χ is large enough. Let N ≺ Hχ be an elementary submodel such
that |N | = κ, N ⊃ N<κ, N ∩ κ+ ∈ On, and p,PĒ,ε, Ẋ ∈ N . Let f∗ ≤∗ fp be a
fully 〈N,P∗

Ē,ε
〉-generic condition. Let A be a tree such that 〈f∗, A〉 ≤∗ p. For each

〈ν〉 ∈ A set

D〈ν〉 = {f ≤∗ fp〈ν〉→ | ∃r ≤ p← ∃s ≤ 〈f
∗, A〉〈ν〉← ∃B r_ s_〈f,B〉 ‖ pν(κ̌)0 ∈ Ẋq}

Observe that by Prikry’s condition the set D〈ν〉 (〈ν〉 ∈ A) is dense open below
fp〈ν〉→. Thus for each 〈ν〉 ∈ A, f∗〈ν〉 ∈ D〈ν〉. In particular there is a condition
r ≤ p← and functions s : Lev0(A)→ PĒ,ε← and B : Lev0(A)→ such that

{〈ν〉 ∈ A | r_ s(ν)_〈f∗〈ν〉→, B(ν)〉 ‖ pν(κ̌)0 ∈ Ẋq} ∈ Eζ(f∗).

Let g′ = f jEζ (s)(mcζ(f∗)). Then set g = {〈ᾱ, g′(ᾱ � ζ)〉 | ᾱ � ζ ∈ dom g′}. Observe
that g ≤∗ f∗. Let p∗ be a condition such that fp

∗
= g, p∗← = r, and

{〈ν〉 ∈ Ap
∗
| s(ν̄ � dom f∗) = p∗→〈ν̄〉←, p

∗
〈ν〉→ ≤

∗

〈f∗〈ν�dom f∗〉→, B(ν � dom f∗)〉} ∈ Eζ(g).

Thus jEζ (p
∗)〈mcζ(p∗→〉 ‖jEζ (PĒ,ε)

pκ̌ ∈ jEζ (Ẋ)q. �

Observe that if p and q are compatible conditions, and ζ < o(Ē) is a repeat point
of Ē, then jEζ (p)〈mcζ(p)〉 ‖jEζ (PĒ,ε) jEζ (q)〈mcζ(q)〉. Thus it makes sense to define a
subset U of P(κ) in a PĒ,ε-generic extension by:

jEζ (p)〈mcζ(p→)〉 
jEζ (PĒ,ε)
pκ̌ ∈ jEζ (Ẋ)q =⇒ p 
 pẊ ∈ U̇q.

Let us fix through the end of the section the repeat point ζ and the name U̇ .

Corollary 5.8. Assume p 
 pẊ ∈ U̇q. Then there is a Prikry extension p∗ ≤∗ p
such that p∗← = p←, and

jEζ (p
∗)〈mcζ(p∗→)〉 
jEζ (PĒ,ε)

pκ̌ ∈ jEζ (Ẋ)q.

Proof. Construct by induction the sequence 〈pξ | ξ < λ〉 (λ < κ) where {pξ← | ξ < λ}
is a maximal anti-chain below p←, 〈pξ→ | ξ < λ〉 is ≤∗-decreasing below p→, and
jEζ (p

ξ)〈mcζ(pξ→)〉 ‖jEζ (PĒ,ε)
pκ̌ ∈ jEζ (Ẋ)q as follows.

Assume 〈pξ′ | ξ′ < ξ〉 was constructed. If {pξ′← | ξ′ < ξ} is a maximal anti-chain
below p← then the induction terminates with λ = ξ. Otherwise choose q′ ≤ p←
such that q′ ⊥ pξ

′

← for each ξ′ < ξ. Let p′ be a Prikry extension of pξ
′

→ for each
ξ′ < ξ. By 5.7 there is an extension q ≤ q′_ p′ such that q← ≤ q′, q→ ≤∗ p′, and
jEζ (q)〈mcζ(q→)〉 ‖jEζ (PĒ,ε)

pκ̌ ∈ jEζ (Ẋ)q. The inductive step is finished by setting
pξ = q.

When the induction terminates let p∗ be a condition such that p∗← = p← and
p∗→ ≤∗ pξ→ for each ξ < λ. We claim that jEζ (p

∗)〈mcζ(p∗→)〉 
jEζ (PĒ,ε)
pκ̌ ∈ jEζ (Ẋ)q.

To show this take an arbitrary condition s_ r ≤jEζ (PĒ,ε) jEζ (p
∗)〈mcζ(p∗→)〉 satisfying

s ≤ jEζ (p
∗
←) and r ≤ jEζ (p

∗
→)〈mcζ(p∗→)〉. Since jEζ (p

∗
←) = p←, there is ξ < λ such

that s ‖ pξ←. Since jEζ (p
∗
→)〈mcζ(p∗→)〉 ≤∗jEζ (PĒ,ε)

jEζ (p
ξ
→)〈mcζ(pξ→)〉, r ≤jEζ (PĒ,ε)
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jEζ (p
ξ
→)〈mcζ(pξ→)〉. Thus s_ r ‖ jEζ (pξ)〈mcζ(pξ→)〉. Since jEζ (p

ξ)〈mcζ(pξ→)〉 
jEζ (PĒ,ε)
pκ̌ ∈ jEζ (Ẋ)q, r_ s 6
jEζ (PĒ,ε)

pκ̌ /∈ Ẋq. �

The following claim connects the preservation of measurability with |ε|. In the
case of Radin forcing, a sequence of measures of length of cofinality greater than
κ+ is enough in order to preserve measurability, so one might suspect a technical
weakness in the proof of the claim. However, we give an example showing the
dependency on |e| cannot be removed. Thus let Ē be an extender sequence of length
κ+4, where each extender has only κ+3-generator, and the set of all generators is
unbounded in κ+4. Let ε be sup{jEξ(κ) | ξ < κ+4}. Then in the generic extension
we have 2κ = κ+4, and there is a club of κ on which 2µ = µ+3 holds. Now, κ remains
regular but it cannot be measurable. Incidently, this example demonstrates that
the claim on preservation of measurability appearing in [5] is incorrect.

Claim 5.9. If cf(o(Ē)) > |ε|, then κ is measurable in a PĒ,ε-generic extension.

Proof. Fix some d ∈ Pκ+ D. For each ρ < o(Ē) define Fρ =
⋂
ρ′<ρEρ′(d). Since

the sequence 〈Fρ | ρ < o(Ē)〉 is ⊆-decreasing, each filter has at most κ+ elements,
and cf(o(Ē)) > κ+, there is ζd < o(Ē) such that the sequence stablizes, i.e., for
each ζd ≤ ρ, ρ′ < o(Ē), Fρ = Fρ′ .

Since |D| = |ε|, |{ζd | d ∈ Pκ+ D}| ≤ |ε|. Since cf(o(Ē)) > |ε|, ζ = sup{ζd | d ∈
Pκ+(D)} < o(Ē). By the construction, ζ is a repeat point of Ē. Thus, one can
consider a condition p ∈ PĒ�ζ,ε to be also in PĒ,ε.

We prove that U is a normal measure on κ. We use the common convention that
the PĒ,ε-names of the sets X, Xξ, Y , and U , in the generic extension are Ẋ, Ẋξ,
Ẏ , and U̇ , respectively.
X ∈ U, X ⊆ Y =⇒ Y ∈ U : Assume p 
PĒ,ε

pẊ ∈ U̇ , Ẋ ⊆ Ẏ q. By lemma
5.7 there is a Prikry extension p∗ ≤∗ p such that jEζ (p

∗)〈mcζ(p∗→)〉 
jEζ (PĒ,ε)
pκ̌ ∈

jEζ (Ẋ)q. It is immediate that jEζ (p
∗)〈mcζ(p∗→)〉 
jEζ (PĒ,ε)

pjEζ (Ẋ) ⊆ jEζ (Ẏ )q, thus

jEζ (p
∗)〈mcζ(p∗→)〉 
jEζ (PĒ,ε)

pκ̌ ∈ jEζ (Ẏ )q. Hence, p∗ 
PĒ,ε
pẎ ∈ U̇q.

X /∈ U =⇒ κ \X ∈ U : Assume p 
PĒ,ε
pẊ /∈ U̇q. By lemma 5.7 there is a

Prikry extension p∗ ≤∗ p such that jEζ (p
∗)〈mcζ(p∗→)〉 
jEζ (PĒ,ε)

pκ̌ /∈ jEζ (Ẋ)q. Thus

jEζ (p
∗)〈mcζ(p∗→)〉 
jEζ (PĒ,ε)

pκ̌ ∈ jEζ (κ̌ \ Ẋ)q. Hence p∗ 
PĒ,ε
pκ̌ \ Ẋ ∈ U̇q.

∀ξ < κ Xξ ∈ U =⇒ 4ξ<κXξ ∈ U : Assume p 
PĒ,ε
p∀ξ < κ̌ Ẋξ ∈ U̇q. Using

lemma 5.7 construct by induction the sequence 〈pξ | ξ < κ〉 such that 〈pξ→ | ξ < κ〉
is ≤∗-decreasing below p→, and for each ξ < κ, pξ← = p←. Let f∗ =

⋃
ξ<κ f

pξ

→ .
Construct an f∗-tree A as follows:

Lev0(A) = {ν ∈ OB(f) | ∀ξ < ν(κ̄)0 〈ν � dom fp
ξ

→ 〉 ∈ Ap
ξ
→},

and

A〈ν〉 =
⋂

ξ<ν(κ̄)0

Ap
ξ
→ .

Set p∗ = p_〈f∗, A〉. By the construction we get that for each ξ < κ,

jEζ (p
∗)〈mcζ(p∗→)〉 ≤∗jEζ (PĒ,ε) jEζ (p

ξ)〈mcζ(pξ→)〉.
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Thus jEζ (p
∗)〈mcζ(p∗→)〉 
jEζ (PĒ,ε)

p∀ξ < κ̌ κ̌ ∈ jEζ (Ẋξ)q. Thus p∗ 
 p4ξ<κ Ẋξ ∈
U̇q. �
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