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Abstract. From GCH and P™(x)-measurable (1<m< @), we construct a model satisfying 2% =Ny and

2N = X .. for monotonic a:@— @ satisfying a(n) > n.

1. INTRODUCTION
Determining the possibilities for the function xa 2 is still an open question.
History of the work done on this problem can be found in [G-Ma], [C], [Sh2].
In this work, which is a generalization of [G-Ma], we prove the following: Given

I<m< w and a monotonic function a:w— @ and assuming that X is a P"(k)-

hypermeasurable cardinal, we can build a generic extension in which 2% =X_  and

a(n)
20 = X,,,. For m>2 this assumption is needed by [G-Mi]. For m =2 using [G1] one
can reduce the assumption to o(x) = k" which is the best possible.

We tried to make the paper as self contained as possible, assuming that forcing
technology and large cardinals techniques are known.

The structure of this work is as follows. In section 2 we give definitions and
notations which are either well known or are from [G-Ma]. In section 3 we'll extend
V in order to have generics we need. In section 4 we'll define the forcing notion
which actually does the job.

This paper is a somewhat generalized version of the 2nd author M.Sc. thesis done
at Tel-Aviv university under the direction of M. Gitik. The 2nd author would like to
thank again M. Gitik for his help with this work.

2. EXTENDER PRELIMINARIES

Let &k be measurable cardinal and assume (A,<) is k" -directed partial order.

IE-mail: gitik@math.tau.ac.il
2F-mail: carmi_m@cet.ac.il
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Definition 2.1: A sequence ((U,laeA) 7z, ,la,feA a=p)) of k-complete

ultrafilters over sets of cardinality x is called Rudin-Kiesler directed commutative if

’”

(D) 7, (X)eU, < XU,
Q)VaeAn,,=id
QB)Va,p,ye A a> > ythere's X eU , such that
vve X 7, ,(V)=75,(7,5(V))
@) Va,pye A B+y, a> B ythere's X eU , such that
VveX 7w, (V) # T, (V) O
Definition 2.2: An ultrafilter U will be called P-point if for any f:x— x there's

’”

X eU suchthat Vv< kI XN f™ (vI<k.

Definition 2.3: We call (U,laeA) (7, ;1a,fe A a=/[)) anice system of length
|A| if

(1) A has a minimal element, O.

Q) (U, laeA)(n,zla.fe A a>/p)) is Rudin-Kiesler directed commutative.

(3) U, is a normal measure over K.

(4) YVae A U, is A P-point ultra-filter over X.

G)Vazp Vv<k z,,(v)= T (T 5(V)

6)Va,fe AVV<Kk T, (V)= Z50(V).0

Definition 2.4: We'll write V instead of 7,,,( ). Note that it's independent of a.
Definition 2.5: (v,...,v,) € [x]** will be called ° -increasing if (v{,...,v}) e [«]*
Definition 2.6: Let se[x]*° be °-increasing. We'll say v is permitted to s if
Y > maxs’.

Definition 2.7: Suppose V&< k A, C & then éiAf ={{< Vi< (e A}

Note 2.8: A’ is a kind of diagonal intersection and if V&< k A;eU, then
AN AU,
&<k

Notation 2.9:
Col(a,p) ={fldomf c a,ranf c S, |f|< &}
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Col(a,<p)={fldom f c fxa,ran f < B, f (&£, ) <&,
C(a.p={fldomf cfxa,ranf c2,|f|< a}

Definition 2.10: Let p. B, — P, be an embedding of forcing notions and G, c P, filter.

fl<a}

Then
< p”G1 >= {pz € P, | dp, e G, p(p) < pz}

Fix 1<m< @ and assume we have an extender E=(E, lae[x™]™”) and its'

+m

natural embedding j:V — M, = Ult(V,E). Moreover assume k" = (k™) u, and
M||="2" < k™”. We iterate j, to get j,:M, — M, and we set j,=j,0j,

K, =j (k).

Claim 2.11: There's a nice system U =((U,laecA),(x,,la.fecA a=f)) on Kk

where A ¢ ', A| = k™" with a minimal element x and M, = Ult(V,U).

Proof: As M,|=“2" < x™” we have that X ={a< k12 <a™ «a inaccesible} is

1-1
E_,_-large set. Build by induction a function 7:x—[x]™" such that Vae X

onto
1-1

1-1 ‘
T:a" —>[ad" " and T(a)=(a). We get that j(T):j,(x)=[j,(x)]*"® and

onto

Ji(T) (k) = (k). For our purpose the restriction of j,(T) to k™ is the important part.

+m

1-1
We have j (T)Ix™: k™ =[x ]°*. We define a partial order on &™ —k by
onto

asf < j(T)(a)c j(T)(P). Clearly this partial order is x*-directed. We'll take
A={a< ™ Imin j(T)(@)= k} with the same partial ordering. On A the partial
order < has k' as a minimal element. For each a€ A define X eU, & ae j(X).
The definition of 7,, for > & will be done in 2 steps. First we define 7, and then
7z, for f>a> k. Let feA. Set 7y, (V) =minT(v). Note that this definition isn't

dependent on 3. We get j,(7,,)(f) = min j,(T)(H) = k as needed. Let k< @< ff and

set b= j,(T)(p). Hence
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!
V7 M, v N=unv.,)

ig
kg ks(Lf1u,) = 3 (B
Ny
kﬁ,(iﬁ(T)([id]Uﬂ)) =b. As [id]UK =k we get that kﬁ,(K) < kﬁ([ﬂﬁ,,{]) =k hence
crit(kg) > K. As |b| < k¥ we have that k;(iﬁ,(T)([id]Uﬂ)) =b. We set iﬁ(T)([id]Uﬂ) =b’

b/

and we know that < k. Setting a = j,(T)(c) we know that a — b. Hence there's
a’cb’ such that kj(a’)=a. As |a’| < k we have that a’€ N, giving us ky(a’)=a.
By setting [f]Uﬁ =a’ we get that j,(f)(f)=a=j(T)(@). Hence j (T of (B = «.
We note that

Ji( 7 0T 0 )(B) = k= (75, )(B)
hence X ={v< k!, o' of (V) = 75, (W)} €U Thus we define

T o)) veX
ve X

T )=
This gives us Vv< x 7, (V) =(7,,07,,)(V) for f> a. The last thing to show is
that M, =Ult(V,U). Let xe M,. Thus x= j (f)(a). Without loss of generality
min(a) = K, so we can pick &€ A such that j (T)(a)=a.Hence x = j,(f oT)().0
Lemma 2.12: j’A is dense in j (A).
Proof: Let d€ j,(A). Then = j,(f)(@) for f:x— A. As A is k" -directed there's
ye A suchthat Vé< x y> f(&).So 0= j,(f) (@) < j, (.0
Proposition 2.13: j(A) is dense in j,(A)
Proof: From elementarity we get that j” (j,(A)) is dense in j,,(j,(A))= j,(A) so
from previous lemma j, (j(A)) = j;(A) is dense in j,(A).0
Claim 2.14: M, ={j,(f)(a,j(a) | f eV, ac A}
Proof: Let x € M,. Then there are he M,,d¢€ j,(A) such that x = j,(h)(J). Due to
denseness of jA in j (A) we can assume that x = j,,(h)(j (7)) for ye A. Now
there are geV,BeA such that h=j(g)(B. So x=j,(j, ()P, ()=
(DG BG () = i (DB (). The last equality is because
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B< k™" < ji(k) = Kk, =crit(j,). Now take a=pBy and define
[ (&0 =g(x,5(8), 7, (). We'll get x = j,(f) (e j,(@).0

Definition 2.15: X eU. < {v, I{v,I(v,,v)e X}eU,}eU,

Note the above is equivalent to X e U & (a, j, (@))€ j,(X).

Proposition 2.16: For any ac A {(v,,v,)e[x]’ v, < V}eU]

Proof: This reflects the fact that M,I=“a< k,”.0

Proposition 2.17: Let e A, X €U, and f:X — k such that Vve X f(v< V.
Then there's £< xk and X DY €U, such that VveY f(v)=¢.

Proof: We get that j,(f)(@) < k. Let &= j,(f)(@). As {< k we have &= j,(c.)()

(where c, is a constant function with value &).So j,(fNa)= Ji(ea)(a) 0

The following claim is a typical usage of the previous one. Several variations of it are

used later.

Claim 2.18: Let o€ A, X €U, and F:X — Col(u, ¥) xC(1, k) such that Vve X
F(v) e Col(i,V)xC(u, V). Then there's f € Col(u, k)xC(u,x) and X DY e u,
such that VveY F(v)=f.
Proof: Take enumeration <f§‘ &< K‘> of Col(u, k) x C(u, k) satisfying £< V' < fe€
Col(u, V') x C(u,V"). Defining now f()=¢& & F(O) = f; yields a function on
which the previous proposition works, giving X oY €U, and & such that V{eY
f(§=E&andso V{eY F({)= [0
3. PREPARATION FORCING
We start from a universe V satisfying GCH which has an extender

E={E lae[x™]™} (1<m< w) which catches V up to V. That is we have

+m*

JoV > UIV,E)=M 2V

K+m

(i.e. K isa k™ -strong cardinal).

Occasionally we'll write j, when we mean j,, in the sequel.

Our assumptions are enough for invoking 2.11 so we drive the nice system U

from the extender E.
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We'll iterate j,, and have V o M, UE M, and set j,, = j,0j

K,=7J,(K).

Cardinal Structure for m =3

Using U we define I: M, — M, as I(j,(f)(@) = j,(f)(j,(@)). Note that [ = j, I M,.
(That's because for any xe M, x=j(f)(@) hence by -elementarity
M\1="ji(x) = ji, Gi(F) (), thatis iy (x) = j,(£) (i (a) = 1(x).)

J12
y — =8

1 l 'MZ
i V- N=Ul(V,U,)
k
N 2 >N L - » MY k([f]UK):jl(f)(K)
TG AT
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M is the model generated in N using the extender i(E). The other models and

elementary embeddings with the N superscript are created analogously. We set

K\ = joui(%)).

Set the following:
Py =( J]Col(x™.< &), = ([JCol(x™.< &))),,

m<n<@ m<n<a@

P=C[ICx™. &), = CTTCE" . (KT) ),

m<n<@ m<n<a@

P, =(C(K™, k1)), = (CCK™ (KI®) 1y ),

[)3 — (C(K+(m—1) , K-l#w))Mz — (C(K+(n1—l) ,(K-l#a))MZ ))Ml

P, = (C(K™, &), = (CK™ (K1) Dy,

P, =(C(k", k7)), = (COK",(K7) 1y, ))
0=(J]Col(x,.x7)),, = (J[Col(x,. &),

1<n<w 1<n<w

(The equalities above hold since M ||=“M," c M,”.)
Ry =(J]Col(x}".< &,)),,, =[] Col(x".< &,)),,, =I(B)

R =([JCx". &), = CTTCK" (K5°) 1)) 0, = L(R)

R, = (C(K" K5%)) 4y, = (CCK J(K5) 1y )y, = 1P
Ry = (C(x" ™", 5,))y, = (C(&T" (K)o, = L(PY)

R, = (C(K]", K%)= (C(KT ,(K5%) 1)), =1(P,)
R, = (C(x7,K57)),y, = (C(K7,(K5”) )y, = (COKT,(K5?) 1y )y, = L(B,)

We want to extend V so we would have a P, X...xP , XOXR,X...XR

m+l "

generic filter over M,. We would force with the following in order to get this filter:
E:HC(K+,K+,1)X HC(K+,K+m)
1<n<m m<n<®

f_)z — C(K+In,(KTw)M2)E C(K+m, K+m)

f_)3 — C( K+(m—l) , ( K-lul))M7 ) = C( K+(m—l) , K+m)

P =C(k"™ ,(k*) )= C(K™ &™)
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P, =C(x",(k"), )=C(k", k™)
0, =C(x*,«")
PxQ = P,x---xXP, . XP X HQ (We hope the rather strange indexing we chose

m+1
1<n<w

will be clear from the proof). Let IXJ =1,x...xI, ., xI XI,.,x an be PXQ -

1<n<w
generic over V.
Lemma 3.1: A A-closed separative forcing notion of size A is isomorphic to C(A4,4).

Proof: Essentially lemma 25.11 in [J] .0

In [C] it was proved that (C(i(x),i(x)")), = C(x", k™). The following is a slight
generalization of it. The proof technique is the one used in [C].

Lemma 3.2: 1Sn< @ |y = k", NI=“u is cardinal”, (C(u,i(¥)™)) = C(k", k™).
Proof: The proof will be done by induction on n. For n=1 we use the previous

lemma. Let n>1 and assume the lemma is proved for values below n. As
i(k")= k™" the set C’={a<x™ | i(@)=a} is unbounded. Let C be C’ with its’
limit points and take increasing enumeration of it C :<a§‘§ < K‘+">. We have that

i(k™) = U[aé,aéﬂ). Consider (Clulas ag,)))y- By induction there's n’ <n, o

§<K+"
P,=C(x", k™) such that o (Culag, )y = P Let
O={qe H P: llsupp gI< x}. It is clear that Q = C(k", k™). So by proving now that
<™

o (C(u,i(k)™))y > Q defined by o(p)= (os(pllag,az)xuwl E< k™) s
isomorphism we finish the lemma. The non-obvious things are that the range of o is
in Q and that it is onto Q. So let p € (C(u,i(x)™)), . In order to show that o(p) € Q

we need to show that Isupp o(p)I< k. As NI=“Ipl< g’ there's £<i(x™) such that
pcpla;xu hence suppo(p)csupp o(pla,xu), so it's enough to prove

Isupp o(pla, x u)I< k which we'll prove by induction on &. For £=0 it's obvious.

For the successor case we know

supp o(pl @, X () = supp o(pla, X f) Usupp O(pll s, A, ) X ).
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By induction Isupp o(pla, X @)I< k and from definition Isupp o(plla;, ;) X W< k

hence Isupp o(pla,,, x 4)I< k. For & limit we'll split the proof. Let £ be limit ordinal
with A =cf £< k. Take a:= Uaév’ so supp o(pla,; X u) = Usupp o(pla; xu), by

A WA

induction and A<k we get Isupp of pla;xwl< k. Now let & be limit with
A=cf &> k. Take aég:Uagv such that i(a;)=0; . As A# Kk we have

V<A
i(a)=Ui(e;)=Ua, =, As k<cfa, also i(x)<i(cf a,) =cfyi(a,)=

V<A V<A
cfy(ay). As NI=“Ipla;xul<u” and NI=“cf a,>i(k)” there's &< ¢ such that
pla;xuc pla,xu giving us supp o(pla,xu) csupp o(pla, xu) and by

induction we finish.0
Lemma 3.3: There's a p,:( HC(K“’ NUC IS I

m<n<@

N

7.

Proof: This is a corollary of 3.2,
(TTC"™ .G ), ) = (CE™ L G(R)) o D

1<k<w
Vk>m (C(KM,(I'(K)M)MIN))N = (C(&™,i(K)™)
[Tc . «)x T]C(x . &™) =C(x*, &™).0

1<k<m m<k<@
Lemma 3.4: There's a p,:( HCol(i(K),i(K)*))N =0.

1<n<w
Proof: From 3.1 we get (Col(i(x),i(x)")), = 0,.0
Claim 3.5: V[IxJ] has the same cardinal structure as V and contains a

Ryx..XxR ., XOXP x...xP  -generic filter I =1,x...xI  XJXG,X...XG

m+1 m+1 m+1

over M,. Specifically, if M,I=“D 1is dense open in PFyX...xP, X

m+1

OxXRyx...xR, .~ then there's elementin DN (I, X...xI, ,xJXG,X...XG,,,) of

m+1 m+1

the form
Ui )&, i (FE), Jy (fo)(@)s..s Ji ()@, Ji (R)(K),

728 (@), j5 (8, (@) and (i (8N, ..., ji (8, @) >€ Iy X.. X1,
Proof: PxQ collapses no cardinals using the usual arguments for multiple Cohen
forcings.

We will show that we have the generic set by constructing it step by step in V[I X J].
Step 1: There's I; €V whichis T = ( HCOI(K+n ,<i(k))),-generic over N.

m<n<a
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Proof: Working in N: T satisfies i(k)-c.c. and |Tl=i(x). So T has at most i( k)
maximal anti-chains.

Working in V: T is k" -closed and the number of anti-chains we had found in N is

li(x)l= k. Hence we can build a filter I; €V which is T-generic over N.
Step 2: There's I, whichis T =( HC(K” ,(i(K)””)MN )) y-generic over N[I;].

m<n<@
’”

1

Proof: Use the p, from 3.3 to set I/ ={p;' I,). We'll show I, is T-generic over

N[I;]. Take D e N[I;] dense open in T. As I; €V we have DeV. So p/DeV is
dense open in P, and using genericity of I, over V we have p/DNI, # @, hence
DI +D.

Step 3: Set the following:

I, =(k"I})

I, =(k"I))
I,=1LIP,

Iy = I_3|Pa

Im = I_mlpm
Im+1 = _m+l (here we haVe R?Hl = f_:rﬁl)
I=pt )
J — <k”.],>
G, =",
G, ={"1))
G, =(l"L,)
G,="I)

Gr:1+l = <i”1m+l>

-10-
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Gy = ("1} = (K"G,,) (because [ = j, = k i)

Step 4: [, x [, is P, x P,-generic over M,.
Proof: lLet DeM, be dense open in FXxPF. Take f such that
D=j(f)xa,K,a,). Then

X = {<§’§1’K ’gn>|f(§7§1’K ’gn) dense Open in
[JCol(¢".<m)x [TCE™.(x*), )

is  E_.,q-big. Define (7 (&)= | f(£&&.KE) and  note  that
(66K ¢ )eX

LR Cj (ke K,a). For each & the forcing HC01(§+”,<K)><

m<n<a@

HC(f*",(K*“’)M]) is &' closed and < & <L < & < E™ so {Af (&) dense open

m<n<@

in HC01(§+",< K) X HC(§+",(K+w)M1)}EE<K> meaning i(f )(kK)e N is dense

open in (HCOI(K+”,<1'(K))>< HC(K+",(i(K)+“’)MN))N so from genericity of

m<n<o m<n<w
I[xI/  over N we get that i(f )W K)NIXI)#D  yielding
JEORAUXT) %D

Step S: 1, is P,-generic over M [I, X I,].

Proof: Let P, > Ae M\[I,x1,]such that M [I,x],]l="*A is maximal anti-chain”. As
M,|=“P)x P, is k"™'-closed” we have that Ae M, Take enumeration
A={a,1£<k™} and set B=J{doma,|{<k™}. Take ¢pBX2&V,,, @M,
We'll show that A is also a maximal anti chain in C(x*™,x™™). (That is in V!).
Suppose there's pe C(x™, k™) such that Va € A pLla. Then from the definition of
B we have that Vae A plBLla. As Ipl< ™ we have that |¢'plB|< k™ and

@’plBCV,,, . We know that M, 2V, """ and so plBe (C(&™, (K1), )y, - SO

there's a€ A such that plBlla. Contradiction. So Aml_2 # and obviously

AN, #D.
Step 6: V3<k<m+1 I, is P -generic over M ,[I, X1 X...xI_].

Proof: This is exactly as in step 6.

-11-
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Note: Thus far we had shown that I, x---xI ., € V[I] is P,x---x P, , -genetic over

m+1
M,.
Step 7: G, x...xG, is R, X...XR, -generic over M,.

Note: We don't handle here the generic over R _,, due to Q. Later, we'll tackle

m+1

R ., X QO together.

Proof: Let DeM, be dense open in RyxL xR, Take f such that

D=j,(f)(e j (). Let

X={<v,v>

f(v,,v,) dense open in HCOI(V?M,< K) X I_IC(V?Jr”,(KM),V,I)><

m<n<® m<n<@

CW™ (K5, IXCO ™ (K5 )X X OO (7))

then X eU.. Recalling that {(v,,v))Iv,<V}eU, we set f ()= []f(Ve.1))
(Vo v)eX
vo<vy

and we note that jz(f*)(jl(af)) c j,(f)(e, j (). Thanks to Vl”—closure we have

{(V)If" (1) dense open in [JCol(V™, 0)x [JC(V™.(x*),, )%

m<n<a@ m<n<@

C( I}IHm,(KHU)MI)XC( V?+m—1’(K+w)MI )XK XC( V10++’(K+w)MI )E Ua
hence j,(f )(a)e M, is dense open in P,xL XP, so from genericity of I,xL XI_
over M, we get that () @NUXL xI))#=D  yielding

LU OG(@)N(GXL xG,) = D.
Step 8: G/, is T=(C(i(K)+,(KfV+“)MN )) y-generic over N. Moreover, if De N is

dense open in T then there's pe [, such that [(p) € G,,, and i(p) e DN G,

m+1*

Proof: let DeN be dense open in 7. Take D=i(f)(x). Hence
X ={&f (&) dense open in C(x",(x]“),, )} €U,. Set f’“:ﬂf(f). Note that

feX

i(f)c D and due to x*-closeness f is dense open in C(K+’(’ffw)Mz)~ From

hence i(p)ei(f )NG,

m+1°

genericity of I, over Vwe have pe f" N1,

m+1

Trivially

-12-
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pel,.. ji(p)=k(i(p)ek’G,, cG,,,. As pe M, and jIM, =1 we get that

l(p)EGm+l‘ _

Step9: J' s T:(HCol(i(K),i(K)+))N -generic over V[ . ] (and thus
1<n<w

overN[G ., ]).

Proof: Let DeV[I,,,] be dense open in T. Then p{DeV[I,,, ] is dense open in Q

and as J is Q -generic over V[I ] we get that pyD N J # @ hence DN J' #D.

Step10: G, xJ is R

m+1 m+1

X Q-generic over M,.
Proof: Let M,|1=“D dense openin R, ,, XxQ” and D = j,(f)(k,«,,...,a,) . So

X={£.8..8,)]
f(5.6.K &) dense open in C(x™, (k) )% [JCol(k, K )} € Efy -

1<n<w
Set f7 (&)= ﬂf(f,fl,...,fn) and due to k-closeness we have {&f (&) dense
(En b )eX
open in C(x*,(k;“),,, )X [JCol(x, )} € E . s0 ji(f NK) S ji(f)K ... ,)

and i(f")(k) is dense ope;:?n (C(i(K)+,(Kfv+m)M2,v)>< HCO](i(K),i(KY))N. Hence

1<n<w

and (i(p),’y€i(f ) (%)M (Gl xJ") which
yields (j,(p).k(h))e j,(f)(k.a,...,a,) N (G, xJ). Note that as p € M, we have

there's pel ., such that I(p)e G

m+ m+1

p=Ji(g)(@) hence j(p)=1(p)=j,(8)(j ().
Step11: G, xJ is R

m+1 m+1

x Q-generic over M,[G, X...XG, ].

Proof: Let M,[G,xL xXG J=“AcR, xQ is a maximal anti-chain”. As

M,I=“R,., xQ is k;"-c.c.” and M,|="R,x...xR, is k" -closed” we have that

m+1

A€ M,. Trivially A€ M, and from genericity over M, we get AN(G,,, X J) #D.

m+1

Step 12: [, x...xI, ., is Pyx...x P, -generic over M,.

m+l
Proof: Let M,|=“D is dense open in P,xK XP, , ”. Trivially M,|="D is dense open

in Pyx...xP , "hence DN([,x...xI, . )#D.

m+1

Step 13: [, x...x1, ., is Py X...x P, -generic over M,[G,X...XG, . XJ].

Proof: Let M,[G,X...xG,,, xJ]l=“Ac BxK xP,,, is a maximal anti-chain”. As

m+1

M,I=“R,x...xR,, XQ is k,-closed” we have that A€ M, and from the previous

m+1

stepwe get AN, X...x1I, ., )#D.
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Step 14: [ x...xI, . XJXG,%X...xG is PyXx..xP

m+1

XOXR,X...XR

m+1 m+1 m+l "

generic over M,.
Proof: That's just a rewording of the previous step.

By this we proved the claim.¢
Set P xQ"™ =j (PxQ)and I xJ™ = (jT)yx(j’T).

The forcing notion P xQ is k" -closed and j, is an elementary embedding derived

+m

from the extender E = {E, la e[ k™ ]°”} hence we can extend j, to j, with domain

VIIxJ] and j; will be also derived from an extender E = {E, la e[k ]°“}. Thus

Jou J12 Jou

_ _ _ Ji2 _ —
we lift VoM, —>M, to V[IxJ]l> MI"xJP]—M,[I?PxJ?]. Set
M, = M,[1® x J®]. The forcing notions P,,...,P,.,, Q, R,,..,R,., were defined in

M, . Substituting M, for M, in those definitions will leave us with the same sets

because M,|=“P? xQ? is &} -closed”.

Claim 3.6: [ x...xI, , XJXG,X...xG is PyX..XP

m+1

XOXRyX...XR, -

m+1 m+1

. *
generic over M,.

Proof: Let My|=“Ac PyX...XP, is a maximal anti-chain”. As

m+1

XOXR,X...XR

m+1
M,)=“P?PxQ® is  Ki-closed” we get that AeM, and so

AN XK xI, ., xJxGyxK xG, ) # D by genericity over M, .0

m+1

Let use define

V=V []7.1=V

I<n<w
Vi=VII]]J.]

2<n<@
VE=VI[]J,]for2<k < w.

k<n<w

Note that we got from the construction that if D eV, is dense in (Col(i(k),i(k)"))

then there's i(f)(k) € DN J] such that j(f)(kx)e J,.

Corollary 3.7:

It is consistent that there's V'~ with the following power-set function

-14-
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A A<k
28 =k k< A<k
A K" <A

which contains an elementary embedding j,:V" — M, crit(j,) = x derived from an

extender E ={E, lae[«x™]*“} and (k™) = k™. Moreover iterating j, we have
1

= o
Jox J12

V'— M, — M, and there's a filter I,x...xI, ., XJXG,X...xG, €V  which is

m+1

PyX..XP

XOXR,x...XR . -generic over M,.
4. Tue Forcing

The forcing notion we're presenting here is essentially the Gitik-Magidor forcing
[G-Ma] with added Cohen forcings. As the exact definition contains lots of details
we'll describe it here from scratch in a somewhat non technical way.

Our starting point is Prikry forcing. We will extend it in two directions
independently and then we'll merge both extensions into one humongous forcing.

We're starting from a measurable cardinal ¥ and conditions of the form (t,T}
where T is a tree of possible continuations of ¢ with splittings in some ultrafilter. As
is well known the trees in the conditions don't affect the conditions' compatibility.
Taking the sequences in the generic object give us a cofinal sequence (7, |n < @) into
k. We'd like to modify this forcing so that x will become X, of the generic extension.
If the 7, will become X, and k won't be collapsed then it'll be X,. So we'll add Levy
collapses to the conditions. (i.e. a typical condition will look like ({7,, 7,),{f,, 1), T)
where f, € Col(7,,< 7,), f, €Col(7,,<k)). The trees in the original Prikry forcing
allowed us to prove that any statement in the forcing language can be decided by a
condition with arbitrarily chosen sequence length. (Henceforth we will call this Prikry
condition). The Prikry condition is essential in order to control the behavior of the
power-set function below k. In order to have this condition we need some analog of

the trees for the functions. For this we'll add F to the condition which is a function

with domain 7 such that F((v,,...,v,))e Col(v,,< k). This idea goes back to
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Magidor's paper [Mal]. So our typical condition will look like ({7, 7,),{f,, f,). T, F)
with ((7,,7,,7,).(80-81-8,).5.G)< (7, 7,).{fo.f1). T, F) if we also add the
requirements that g, < F((7,)) and that G((v,,...,v,)) < F({7,,V,,...,v,)) for each
(V,...V,) in §. This is not enough. We want that this F* won't affect the conditions'
compatibility. (Remember, the F is analogous to 7). In order to get this we will

restrict the allowed F'. The idea of restricting such a function to values in a filter is

due to H. Woodin [C-Wo]. We'll define F,, (V) =F(v,,....,v,,v)).Leti:V —> N,
witness the measurability of x. We iterate the embedding to get i ,: N, — N, and we
define i, =i, 0i,. If we could have a filter, I, which is (Col(x,<{,(x))), -generic
over N, then we would have required i (F, , )(k)€ . Alas, we have no such
filter. However, we do have a filter, I, which is (Col(x",<i,(k))) N, -generic over N,.
In order to be able to add the requirement i, (F, ,,)(x)€ [ we should change the
definition of F and hence also the definition of f. So in the typical condition
{7y, 7, ) fos [1)- T, F) we have f, € Col(7,,< 7,), f, € Col(7],< k) with the obvious
change in F's definition. The cardinal structure in the generic extension will now be:
X,=7, X, =17, X, =17, X, =1 ... etc. and still if & won't collapse it'll be X,. We

note here that in fact, for every 1<m<w we have a filter which is

(Col(x™,<i,(k))) N, -generic over N, and after the appropriate changes to the f's and
F's we could use this filter. Our next step is to monkey with 2% of the generic
extension. Our first aim will be to have Va< @ 2" =X ,,. Clearly what's needed to
be done is to add to our forcing condition Cohen functions and a function whose

domain is the tree. That is, a typical condition will look something like

<<T(),T1>,<ﬁ)afl>’<g()()’g()l’gl()’g11>aT,F,G0,Gl>'

As our cardinal structure will be (7,, 7, 7,, 7, ,K ) our g's should be g,, € C(7,, 1),
80 €C(7,,K), §,€C(7,k"), g,€C(7/,k"). These last 2 functions look a bit
weird and generate some technical problems, mainly, it's not clear how to extend such

functions when the Prikry sequence is enlarged.. In order to overcome these problems
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we will change them to g,,, g;,- These 2 functions have as their domain the 1st level
of T and for each (V)eT we require g,(V)eC(z,,V"), g, (V) eC(z,v'"). (The
observant reader will see that i,(g,,)(&), i,(g,)(k) are the g,,, g,,)- Defining now for
0<I<l1 G<’V1WV">(,u0,,ul) =G'((v,,...V,. ly, 14,)) the compatibility requirement will
be i,(G')(k,i,(k)) € J' where J'xJ? is (C(k, &)X C(k", K;")) y, -generic over N,.
Once again this generic doesn't exist. The solution to this problem is to make a
preparation forcing which will 'bring in' the needed generics. After this preparation
forcing we loose GCH above & but we still have the elementary embeddings. As we
couldn't get the generic for (C(k,k|)) v, Without loosing also the elementary
embeddings (that is the measurability of x) we won't have this generic. This leaves us
with the inability to control 2%. It was pointed out by Woodin that 7 can be
collapsed to 7, using (Col(i(x),i(k)") N, for which we have a generic filter. So we
will control the power set size of (7;, 7, ,K ) and then we'll collapse all the 7 to 7,.
So the cardinal structure will be (7,,7,,K ). Unfortunately we don't have enough
cardinals left after 7, in order to describe the power set of 7;. We solve this problem
by redefining the f's as (f,,f,)e€Col(z;,< 7,)xCol(7’,< k). Now the cardinal

+3 ++

structure will be (7,,7,", 7, 7,7 ", 7°,K ) and our typical forcing condition looks
like (T T s £ 8ors 8uns Bons 8115 81as 8100, T L G G2, G) where
20, €C(75, 1), g2, €C(T T, 2, €C(7T7, 1), g, (neC(t,v),
g,(VeC(T, v, g,(»eC(z”,v7). We now give the final touch which will

collapse the 7. The forcing condition will look like

n

<<T()aT1>5<f(),f1>’<g()l’g()2’g()S’gfl,gfz5g?3>,<h()sh:<>T’F,G15G25G35H> Where
h,eCol(z,,77), h (v)eCol(v,v') and iL(H, «,,))(Ki(k)eJ where J is

(Col(il(K),il(lr)+))N2 -generic over N,. We will now put the g's into the f's and

change a bit the way a condition looks in order to simplify the notation. So a condition
will look like ( Ty T fos f 0slhys k), T, F, H) where

fyeCol(7’,< 1)XC(7, 1) xC(z", £ )xC(z’, 1),
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f (veCol(7’,< XC(7, VxC(7", V7" )xC(7, v?), h, € Col(z,, 7)),
h'(v)eCol(v,v") and L(F)(ki(x)el, i,(H)(ki(x)eJ, where [ is a
(Col(x™,<i, (k) x C(k*,i,(K)) x C(k™,i,(K)") x C(/c”,il(/c)”))]\,2 -generic filter

over N, and J is a (Col(il(K),il(l()+))N2 -generic over N,.

The above treatment will work as long as the wanted power set function have a

bounded jump. That is there's a k < @ such that 2% <X . In this case we choose

n+k*®
Levy collapse which leave enough cardinals allowing us to describe the power

function on the cardinals following 7, using at most the cardinals following 7, ,,. If

+1°
we want to lift this restriction we'll have also change the Levy collapses dynamically.
As each 'chunk' might have a different length we can't use a fixed number of Cohen
functions in a condition. We'll use F™ to specify a specific function from the product

forcing. Let's take as an example the case 2% =X, and Va>1 2% =X . Welll

describe typical conditions to generate this case. The cardinal structure we suggest is
+ + + 3 + A3 4 A5 46

T T, Ty T, 0 T T, 00 T T T T Ty Ty Ty Tyt
X, ¥ X, X, X, X X, X X ¥ X,X, NIZK
and a condition will look like ({7, z’l>,<f0,f*>,<h0,h*>,T,F,H) where
foeCol(7y",< 7,)xC(7;, 7,7 )xC(7,", 7,)
fr(weCol(z,< XC(T,NxC(r™,v?)
h, € Col(z,, 1)
h"(v)eCol(v, V")
F((v,,v,) e Col(V;’,< v )XC(Vi, Vi) xC(Vi", v xC(vi?, vi°)

F({v,, v, v,)) € Col(V/°,< v,)xK

i, (Fy)(K.i,(K)) € (Col(k™,< i, (k) X C(k",i(k) ™) X C(&™,i(5)™) x C(&™,i(K)")) .

H(V,,v,))eCol(v,,V))
i,(H,)(k, j,(K)) € (Col(i,(K),i,(K)")) ,
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We retreat now to the original Prikry forcing. Our aim is to enlarge 2* without
'loosing control' below . Using Prikry forcing we can add an unbounded subset to .
An obvious suggestion would be to iterate this forcing enough times. Unfortunately
we are loosing control on what happens this way. (i.e. along with the Prikry sequences
also the relations between them are added and these are new @-sequences). In order to
solve this we will add all the Prikry sequences in one step and we'll make sure that the
relations between these new sequences are in the ground model. Our assumption is
that we have a big enough set A equipped with a directed partial ordering having a
minimal element 0 and for each &, A such that &> we have a projection 7, 5
For s c A a typical condition will look like {{a,7”)| @€ s}. By taking only s with
|s| < k we can demand that each such s have a maximal element. And a typical
condition will look like {{@,t“)l @€ s—{maxs}} U {(maxs,:™"*,T)}. The point in

maxs

this forcing is that the Prikry sequences aren't enlarged independently. When ¢ is

enlarged all the ¢“ are enlarged by the projection 7

maxs,o

of the enlargement. Imposing

enough restrictions on the projections guarantee that these sequences will be different
from each other which will blow 2* to |A| As the projections are already in the
ground model we won't get new sets for the relations between the different sequences.
The other parts of the definition of the partial order for this forcing are quite natural.
(i.e. a stronger condition is one with larger support, sub-tree module the projection
etc.). In order to build such an A of size k™ we had to assume that k is a k™" -strong
cardinal. Let j:V — M, witness the k™ -strongness of k. We'll iterate it and have
S M, —> M,, j,=j,0j.

We will now combine together these 2 extension. For this we'll also require that we
take only sc A with Oes. We will put the Levy and Cohen functions on the Oth
coordinate. The function with the tree as domain will be carried on the maximal

coordinate. So a typical condition will look like

{0,470, 7)), fos [ )5 {hy, A7 )Y, (max s,t ™ T, F, H)} U{{a,t*) | ¢e s— {0, max s}} .
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As the tree T is being built on a different ultra-filter each time the compatibility
requirement will use max s to restrict the functions into the proper generic. (i.e.
Jo (F,y)(maxs, j,(maxs)) € (Col( K", < jl(K)))Mz)- Note that the generics we use here

are over M, and the forcing we had done in the previous section give us all the

generics we might need..

This forcing will blow 2* to |A , convert K to X and set the value of 2% to the

prescribed values in one step.

And now we'll look into the gory details.

The universe we're working is the one constructed in the previous section. That is

+m

we have j:V — M|, crit(j) = &, (k*”’)M1 = x"". The power set function in V' is

A A<k
24 = k" K<A<ix™
ﬂ‘*’ K+m <2

and j, is derived from the extender E ={E lae[x™]™”}. We'll derive the nice

system U=((U laeA)(z;,la.feA f>a)) from E. lIterating j we have

j(],l j1,2 j2,3
V—>M,— M,— M, and setting x, = k,k, = j, (k) we have a filter / which is

( HCOI(K+",< K,) X I—[C(K*”1 LK) X

m<n<@ 1€ <n, <@

[Tcx™, &)x J]Col(x}".< k)x  J]C(x™, &™)

1€n <@ m<n<w 1€m <n, <@
1€ny <@

[T (x3=) )% T]Col(k,. 7)),

1€n <@ I<n<w
1<ny <@

-generic over M, .

We are given a monotonic function a:@ — @ and our aim is to build a generic

extension in which 2% =X, and 2% =X_, . We derive functions b,c;,c,: @0 — @

d,e:wx @ — o from a by induction:

b(0)=m+1 ¢,(0)=0
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¢,(0) = m
b( +1)_ m+1 a(c(n))—c(n) <m Cl(n+1) :Cz(n)-l-l
n "~ a(en) —c(n) alc(n))—c(n)>m c,(n+1)=c,(n)+b(n+1)

bd,(n)+k-1)—d,(m)+1  b(d,(n)+k-1)<c(n+1)

d(n,k)=40 b(d,(n)+k—-1)=c(n+1)
bd,(n)+k-1)—d,(n+D)+1 b(d,(n)+k—-1)>c(n+1)
0 b(d,(n)+k-1)<c(n+1)
e(n,k) =11 bd,(n)+k—-1)=c(n+1)
1 bd,(n)+k—=1)>c(n+1)

While the domain of d,e isn't X w we will use their values only where we defined
them.
These functions describe the behavior of the 'chunks' we don't collapse in the normal

Prikry sequence. We set I, to be a
([Col(K™™ < K,) X HC(K+i Ko h)1x Col(k,, k})),,, -generic filter over M,, K,

e(n,i) n
1<i<b(n)

to be
([Col(x™" < k)x J]C(x", &24M)Ix Col(k,, &7 ) x

e(n,i)
1<i<b(n)

[Col(&7"™ < k) [TCR (K0 D, -

1<i<b(n)
generic over M, .

Recall that we have the sequence V=V'>V?’oK oV"oK and let J. be
(Col(i(k),i(x)")) -generic over V"' Note that we choose the generic such that if
D eV"™" is dense in (Col(i(x),i(K)")) then i(f)(x) e DN J, and j(f)(k) is in the

projection of /, to (Col(x,, k7)), -

o

Example 4.1: m=3, a(n)=n+n
+ 42 43 _+4=b(0)
TO TO TO TO TO
NOZCI 0) Nl NZ N?a:cz 0)
T, A A A A

Ryeert RS X X
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T, A Al Al A el A

Ns:q(z) N9 NIO Nll le N13 N14:c2(2)

4+ A2 +3 +4 A5 46 A7 A48 A9 410 11 _+12 _+13 _+14=b(3)
7’-3 7’-3 2'3 2'3 7’-3 7’-3 7’-3 7’-3 7’-3 7’-3 TS 2'3 2'3 7’-3 TS

NlS:cl(3) Nlﬁ Nl7 NIS Nl9 NZO NZI N22 N23 N24 NZS N26 N27 N282l72(3)
The d,e describe what Cohen functions we should add namely 1< k <b(n)

C(T+k T+d(n,k) )

n > Cnve(ni)
Definition 4.2: Let T [ x]™° ordered by end-extension. ¢ € T then
SucT(t)dg{ v klt™"{(VyeT}
Definition 4.3: Let 7 [ x]°” ordered by end-extension. 7 will be called U ,-tree if:
telev (T)>|]=n+1
teT >t e[k]™
t,,t,eT t, <t, = Suc,(t,) 2 Suc,(1,)
Lev,(T)eU,
teT —Suc,(t)eU,

Definition 4.4: Let T be a U ,-tree and t € T. We'll define 7, a U ,-tree to be:
Lev,(T) =Suc,(t)
r €T, — Suc, (r) =Suc, (1" r)

Definition 4.5: Let T be a U ,-tree and A€ U, .. We'll define T1A a U ,-tree to be:
Lev,(TIA)=Lev,(T)N A

teTlA— Suc,, () =Suc, (1) N A.
Definition 4.6: Let (T, li < 1) A< k be U ,-trees . We'll define | T, a U ,-tree to be:

i<l
Lev, (7)) =[\Lev,(T,)

i<A i<A

te T, = Suc , (1) =(|Suc, (1)

i<d i<d
Definition 4.7: Let T be a U ,-tree. We'll define JZ'EO[T a U g-tree to be:
Lev,( JZ'ZO,T) = 7[;;,1,1 (Lev, (7))
te ﬂ/}}aT - Suc”;aT(t) = ﬂ;fa(SucT(ﬂﬁ,a(t)))
Definition 4.8: Let 7 be a U ,-tree and F a function such that dom F =T ¢ €T, then:

domF, =T
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VseT F(s)=F("s)
Definition 4.9: Let T be a U ,-tree and F a function such that domF =T, teT,
F,(—,—) 1is defined by
domF, (-,-) = TI[ kT
V(v ) € TILKT F, (v, vy) = F(t"(V,, 1}))
Definition 4.10: Our forcing notion P consists of elements p of the form
{075, K . ) (fo K s fots £ (B K S B,y By ) (maxs, p™™ T, F L H) YO
{{7,p") y€ s—0,max s}

where

() scA,

s| < k, s has maximal element and 0 € s. We'll write mc(p) for maxs,

maxs

p™ for p™** and supp(p) for s .

(2) Vyes p”e[x]*is ” -increasing.
(3) VO0<i<n f eCol(z)"" <7, )x J]C(# ", 215"

> Yive(i,j)
1< j<b(i)
4) VO0<i<n heCol(Z,, %)
S TisU

o . 0 . .
me(py-tree and Ve T p™~pis  -increasing.

(6) Vyes maxp™ isn't permitted to p”
(7) (W eT |{yeslvis permitted to p” }I< V/

®) (p")'=p’(=(1),K 7)) and Ip"1> 1.
Q) V(WeT f (V¥)eCol(z, " <V)x [[C(7 . 7"") (Assume

n+e(n,j)
1<j<b(n)
7'-2+1 = l}))
(10) V(W eT h (V)eCol(V, V")

(1) Y(v,,.K, v, )eT
F(l/(),..., Vk, Vk+1)EC01(V2+b(H+k+l),< ‘/.]i-‘-l)x HC(‘}£+] l})+d(n+k+l,j))

> Vk+e(n+k+1,j)
1<j<b(n+k+1)

(12) V(v K Vi) eT H(Vy,os Vi) € Col(V,, Vi)
(13) VreT we require {j,(F,)(mc(p), j(mc(p))), j,(Ho) (&, j(K))€L,,,,.0
Definition 4.11: p,q € P. We say that p < ¢ (p is stronger than ¢ ) if

(I)  supp(p) 2supp(q)
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®)
(6)

@)
®)
®)
(10)
(1)
12)
13)
(14)

15)

Possible values for 2% and 2%

Vyesupp(q) p’is end-extension of ¢’
pmc(q) _qmc e Tq

me(q) _

Vyesupp(q) p’—q" =7, ,"a where ac p g™ is maximal permitted

to g”
T <T14

e _gm
Vyesuppg, V{V)e T’ such that v is permitted to p”
Zonep).r (V) = Tty O ey ety (V)
YO<i<n! f7 < f
If n” >n? then f 7 < fn‘,’,*(pmc(") (n?+1))
Vn! <i<n® fP<FI((p™' " —q"™)li—-n? +1)
VO<i<n' h? <h!
If n” >n? then ', < hj;(po(nq +1))
Vn' <i<n’ h' <H'((p"—q")li—n? +1)
If n” =n’ then V< v>eT" fI (W< f9 OX, pmeiqy (W 15 (V)< HET (V)
If n” >n? then V< v>eT” fI" (V)< Flrio_ e O ey ey (V)
h (V)< HY, (V)

VZ‘ETP Fp(t)Squc(z) me 07[
P —q

me(p),me(q

(), H (") < H!,_,(1°)0

Claim 4.12: ( P,<) is a forcing notion.

Proof: 1t's easy to see that < is reflexive. So we're left with showing transitivity of <.

Let p<g<r.Wellshow p<r.

(3) We need to show that p™” —r™ e T": We have

pmc(r) _ rmc — (pmc(r) _qmc(r))u (qmc(r) _ rmC) —

) )
f;c(q)’mc(r)(pmc(q _qu) U (qmc(r _rmC)

As g™ —r™ eT and p™? —g™ eT? < 7;’,,,C<,,_r,,,c we have

my

ﬂ”c(q),mc(r)(pmc(q) —qmc) U (qmc(r) ™y eT"

24



M. Gitik and C. Merimovich

me(r) _ me s

(4) We need to show that Vyesupp(r) p’-r" e, "a where ac p r' is
maximal permitted to r”: Let yesupp(r). Then ¢’ -r"c =z, "a where
acq™" —r™ maximal permitted to r” and p’-q"€m,, "b where
bc p™'? — g™ maximal permitted to g”. So we have

p’—r'=(p"-q")u(q’-r") =
ﬂ-mc(qm’(a) U zmc(r)~7(b) = ﬂmc(r)q}’(][mc(‘”.mc(r) (a) o b)

5) We need to show that Tr < Tpr,,.u,-,_,m So:

Tp S Y;qmc(q)_qmc S (Y;rmc(r)_rmc )pmc(r)_qmc(r) = ’I:mcm_rmc

(6) We need to show that Vyesuppr, V< v>eT” if v is permitted to r” then
ﬂ-mC(p),;'( V) = ﬂ-mC(r),;'(ﬂmC(p),mC(r) (V)

So:
Zoc(pr (V) = Toneay.r(Fomepymetqy (V) =

ﬂ.mC(r),y(ﬂ-mC(q),mC(r) (ﬂ-mC(p),mC(q) ( V))) = ﬂmC(r),}'(ﬁmC(p),mC(r)( V))

O

Definition 4.13: p,q € P. We say that p <" ¢ (p is a direct extension of ¢ ) if

(I p=q.

(2) Forevery yesupp(q) p’ =q”.¢

Lemma 4.14: Let pe P and a>mc(p). Then there's g € P such that ¢ <" p and
mc(q) =«.

Proof: Set S=7, 0 H(T7). For each (nes define

B,={yesupp(p)!| V' >max(p”)’}. These sets satisfy that V) <) = B, cB,,
IB 1<V, suppp= |JB,. Take enumeration supp p = (7! &< k) which will satisfy

<v>eS§
BV g {7§ | §< ‘/0} M Set A§ = {< V> E S | ﬂa,yg(v) = ﬂmC(p),}/g(ﬂaﬁmc(p)(V))} . For eaCh
§,A;eU,. Set A= éAO A; and so AeU,. Shrink § to A. Now, suppose (V) €S is

permitted to p’. Then there's £< V) such that y= Ye- As ve A, we have that

oy (V= Ty, (Tmey (V) - Find now a 7 such that 1° = p” and define

a7 (

qg=(p—{0,p", ", f" ,h",h""),(mc(p), p™,T" ,F" H")}) U
0 D * ¥k
{0, 0", f 7 f 7 O ey 7R,
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Possible values for 2% and 2%

(mc(p),p™)(a,t,S,F’ox H")}

a,mc(p)?
Then g <™ p as requested. ¢
Convention: From now on whenever 7 will be a U ,-tree of a condition the meaning

of ﬂ;}a(T) will be the shrunken tree as constructed above.
Lemma 4.15: Let p e P and e A. Then there's ¢ € P such that ¢ <" p and

pesuppq.
Proof: If S supp p then take g = p.

If ¢ supp p and < mc(p) then take g = puU {{B, p™)}.

Otherwise take > 8, mc(p) and using previous lemma find ¢ <" p with &= mc(q)
and now we can insert £ into the support.®

Lemma 4.16: ( P,<) has the ¥ -c.c.

Proof: Take (p /&< k™)< P. Set d, = supp p.. Using A-lemma we can extract a A-

system of size k" from (d/{< ™). Without loss of generality assume we're

starting with such sequence and its' kernel is d . The number of sequences we can put

on d is (k*°)* = k". So now we can assume that V&,,&, <k Vyed p} =pl.As

the number of possible f,h is &k we can also assume that V&, &, < k™ f7 = f72,

hha = phe Let pg =(7,,K ,7,), 7. =K. Then VE< k™

n

i me(pe)), Ji (R 7)(K0)) € (Col( 7™ < k)X
HC( T Tnn ) X Col(&, k7)), . Set
1<i<b(n)

Q=Col(z)" < x)x [[C(z (%D, ) Col(k, k)

n+e(n,i
1<i<b(n)

Then due to M, > M, we have
Q=(Col(z;"" < ¥)x []C(z). 7)) xCol(k, k),

Al nre(ni
Q has the x-cc. so we must have &,&  such  that
CGi(f " (me(pe)), Ji (" DN Gy (f " ) (me(pg)), jy (™ 7)(K)). The trees and
the functions on them are compatible in all conditions so we have that p. Il p, .¢

Lemma 4.17: 1< k, n< @ and VE< A F¢ is a function with dom F*® = T¢ which is a

U% -tree such that V¢ e T* b (Ft‘f)(a;, i) el Then there's F a function with

nHt+1°

26-



M. Gitik and C. Merimovich

dom F =T which is a U ,-tree satisfying j, (F)(@;, j,(@;)) € 1 such that V&< A

nHrl+1

F<F,.

Proof: First take f3, such that V{< A f, > a,, then set SO=| ﬂ;’l%(T z). The proof
&<A

will be done by induction on the levels of S”. Let ' be a U -tree and 1 € §', || =i.

As L leaves in a k" -closed forcing we can find g € I such that V&< A ¢ <

jz(F§ §<;>)(0‘¢’jl(0‘¢))- Hence therere f,, >/ such that g=j,(f)(B,),(B)).

5 a

nHt+1

Then

A = v) L f,(v,.v,) < F,,il‘%(,)(zﬁ”% Vg0 V) U,
E<A

Pick now S, 2/ such that VreS' with [{|=i we have B, 2p. Set
S’:”,&ilﬁ(si)' Now we set S™[x] =S’I[x] and Sf“zS,’mﬂ;ilﬁr(A,). Set

F k] =F' 07y 4 I[x]" V{Vv,,v,)€S"" *. When the induction terminates we have
(B.,S'.F'li<w). Pick & such that Vi< a>p and set T'=()7z,,(S'). Let

i<
B, = ! l{< Vi, V, >|F"‘+1(Vl, V,) < F,fa‘%(,)(ﬂa,%(Vl),ﬂa,%( V,))}. Build by induction on

levels T =T'N B, and set F,(V,,V,) = F,‘,tl;j‘ﬂ(r) (o, (V)s T, ( V,)).0

Definition 4.18: Let pe P. Then P/p={qe P | < p}. If 7€ p° then (P/p)>™" is
P/p from which we dropped the f,h and parts of f  working below 7 and
(P/ p)<"" are the dropped elements.

Note 4.19: P/ p=(P/ p)<*x(P/ p)*".

Lemma 4.20: If pe P and 7€ p° then ((P/ p)*>" ,<") is 7*-closed and for k # 1
(P/p)*"" has 7%-c.c.

Proof: Obvious. O

Definition 4.21: P, ={pe P | Ip’I1>n}

Note 4.22: P eV".

<w 0

Definition 4.23: pe P, y>mc(p), t €[ k] -increasing

def
(p)m< = {(f, peis) | e supp p,s C 7, - (1) maximal permitted to p‘f}

Claim 4.24: P satisfies Prikry condition.
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Proof: The proof idea is to move on lots of possible extensions of u# looking for those
which decides o and then combining all of them to one condition. That is if (v,) e T*
then we search for a condition stronger than u with 1/ as the second element in the
normal Prikry sequence. The search is done on all the f's as we have relatively few of
them. On the other hand we have too much of the f~ so we will move only on a
maximal anti-chain there. Maximal anti-chains for 4~ are too long so the h" will be
built as a monotonic decreasing sequence as they are closed enough and then using a
denseness argument we'll find 4" in the generic. When we have such a condition
which decides o we accumulate its' Prikry sequences. All this will be done using 3
nested inductions. The first induction will be £< x and will move on most of the
elements of Lev,(T"). The second induction will be on {< ¢ ¢ It will move on all
Levy and Cohen functions which can appear when the Prikry sequence on the 0
coordinate is (), ,u;’) and on all the sequences of projections of Vv to previous existing
coordinates in the support. The last induction is on p<p,. The value of p, isn't
known before this step is started. We pick f ; and make sure that the sequence is anti-
chain. As the forcing the f ; belongs to has the x-c.c. we will reach a point when we
won't be able to pick another fp*. The length of the maximal anti-chain constructed
will be p,. We make sure to throw away from the tree points which are below the

length of the anti chains in order to avoid illegal conditions.

In what follows we use the following convention: If we have (F¢,T¢, BAE< ;) then

by writing V¢< ¢, F<F*, B> B, and T = ﬂﬂ;,ﬁ{ (T¢) we will mean that we got
{<¢y

the F using lemma 4.17, that the picked £ is larger than the filter dom F is using and
that 7 <dom F .

Let u K0,V Ay, (R Y (e (vE), T ,F*,H")}e P and o a statement in the
forcing language. It'll be clear from the proof that if we had chosen a condition with

longer Prikry sequences (i.e. we would have

WV ei i WO A fgreor foin o 95{Bys..s b, k) ) the only thing which would happen is
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that we would have to drag this sequence instead of just (Vg),( £,(h") along the
proof. The proof will be done with 2 lemmas. Roughly speaking, in the first lemma
we will find a direct extension p <" u such that if there's ollg < p then the minimal
enlargement of p which can accommodate the collapsing part of ¢ also decides ©. In
the second lemma we will find p’<" p such that if g<p’, g p’ then q won't
decide o, which is a contradiction.
Lemma 4.24.1: There are p,f,S,F,H such that
1. We have

POROWDLS o Ty ) (B DBV, S F D}

u D00 W e v, T P )}
2. If there are q, 8,V ..cVOVA Foreeir Fots £ 05l Rgsevshy, 1), T’ F’,H  such that

TN GgUO, W VOV fgseos o £ 0B By L),

(S VE .. vOT' F' H)}<
POV 0 N ABAVEY. S FL )
then 3" < f/°, V& 26, V(V,,K V) we have
(p)<ﬁ<¢0{,< sy
005 Vs ot £ 0 T sl By 0 H Ly 0 (D),

0 300

(BAVGK VI,

4 & 5§ -1
CRUTNREIN <J N Ty H oy o MI—O
Note: The values we choose to (V¢ ,...v%) can be anything. (As long as it is a

condition)
Proof: We'll shrink T“ so that x,,7" will contain only inaccessibles. Set p to be a

a0

well ordering of T“I[ k] such that g, < i, = 4 < .
Work in V?*:

Pick /7 such that j,(h)(k,k,) < j,(H")(K,k,).
Take uy = min® 7"I[ k] and set u, = u.

Let ((f¢,hY¢ < &) be enumeration of conditions from
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[Col (V)™ < ) x TTCOA ™ 2400 )1 Col(uh, 1) *
1<j<b(0)
which are stronger than ( ;" (), h" (15)).
Pick f, € (Col ()™ ,< k)% HC(ﬂg Y tgi)) y, (Note that when e(l, j) =1 by
1<j<b(1)

we mean k), Izle(Col(lr,lc+))M2 such that fIsz(F&’la))(af),

h, sz(lg/)’(,ug,l() and 5, 17, hl"*such that j,(f,”)(B") = f,, jz(hl”*)(/() =h,. Now
set

Ho e, )

7 ol
§" =g o1,
If there's
oll gu{{0,( VS,,U8>,<f00’0,fl'*>,<h<?’0,hf*>>,<ﬁ,< Vo oty )»S" F/ H)} <
(Uy) gy O L0V SE F 0GB VB OV a7 F 7 H )
then
po,oqo — q _ (uo)<a e fIO,O,O)ﬁ — fl/* hl(),(),()* — hlf* S0,0,0 — S/ F(),O,O — FI

H*’ =H’ ,30,0,0 =p

u 7 _ u ” __ u
ug) F"= F;ﬂff’) Oy« H” = H(ﬂil)'

else
_ 0,0,0° _ po* 0,0,0% _ 7 ¥ 0,00 _ ar 00,0 _
Pooo = D f = f h, =h S =S F*7=F

H =g~ ﬂo,o,o =p

Now suppose we have (p,,,.S8""",F**? H*?, FO0P" po0r" BoosP<p). By

construction {j,(f,**” )(f,,)P < p) is an anti-chain and (j,(h**" )(©)|p < p) is a
decreasing sequence. If the anti-chain is maximal then the induction on p is finished.
So suppose it's not a maximal anti-chain.

Pick f, € (Col(uy™ < 0)x [TCw ™ 15" 8D ,s 11 < 1o (Fie)(@) which is

1< j<b(1)
incompatible with (j, ( flo’o"f’*)(ﬁoyoﬁ)lﬁ <p) and h € (Col(k,x")),, which is stronger
than (jz(hf)’o’ﬁ*)(l(‘)l/_) <py and B, f”°, h’ such that j,(f”)B)=f,

G (W) (K)=h,.
If p=p+1 then set

7 ol 0,0,p ” __ 0,0,p ” __ 0,0,p0 ” __
S = Ty ﬁmS F’'=F 0%y fros H' =H P” = Pooz-
Otherwise
” _ -1 0,0,p — ” 0,0,p — ” 0,0,p
S _Dﬂ.ﬁ’»ﬁo,o,ﬁs Vp<p F'<Fom,, Vp<p H'<H
p<p
p’= Upo,o,p .
p<p

This last union might cause a problem for large enough p. Namely

p//u (uo) U {<O,< ‘}(:’ﬂg>’<f0(),(),flf/*>’<h(()),()’hl”*>>’<ﬁv’< ‘f,,ﬂg,>,S”, F”,H”>}

(a<ug))

might not be a condition. (in p” there are too many coordinates which can be
enlarged together). The solution is to shrink S” so all these continuations won't be
possible. Let's set
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Coo, = {7 inaccessiblelp> 1> 4o} This set is bounded hence Coop €U, 80 we can
shrink §” to §” — 7. ,(C,,.,)-
If there's

ol U0,V o) (s g DBV o .S F H )Y <

PO (W) e, OOV o ) g ) B VG ot ), 87 F” H))

then
_ 000" _ pr* 0,0,0" _ 7% 00,0 _ o 00,0 _ 17
DPoop =49 (u0)<a,<ﬂg>> A =/ h =h S =S F =F

H"? =H’ IBO,O,p = ﬂ’
else

o 000" _ 0.0,0" _ 7% 00,0 _ ar 00,0 _ 7
Poop =D h =fi h =h S =S F =F
0,0,0 __ ” _ ,
HY™=H"  B,,,=F

When the induction is finished we have (j,( flo’o’p*)(,b’oqo,p)lp< pP,) a maximal anti-

chain below j, (F,;, )(@) and (}, (h** ()l p<p,) adecreasing sequence.
We'll continue with the general case. Assume ( j, ( flo’z”’*)(,b’ozip)lp< pz) is a maximal

anti-chain below jz(F;;%)(a) for all Z<§ and (jz(hf)‘z”’*)(lg‘)lp<,a§,2<§') is a

decreasing sequence.
Pick  f, e (Col (o™ ,<0)x []CGwo " a5 D> Fi S ha(Fl (@) and

7
1<j<b(1)
h, € (Col(x, k*)),,, which is stronger than (j,(h’*" )(x)lp< Py §<& and B, £,

" such that j,(f;"" )(B") = fi» j,(B)(K) =h.
Set ) )
S-r]zﬁ%g SV E<{ p<p; F”SFQMOﬂﬁ%b

{<¢
p<p;

VZ’< é’ p<p2 H” S H(),Z,p
r”=Up,; 2, Coo=1{1 inaccessiblel> 7> 1}

i<
PPz

and shrink S” to §” - 75 ,C, .

If there's '
Ol g O {0,004, CFo 1) (o S W) (B (Ve 4 ), 87 F/ H )} <
PO (Ug) e, OOV oS ) K S ))(B7 VG ot ), 87 F H))

then
060" _ pox 0,60 _ 7% 0,60 _ o 0,60 _ 17
Poco =q= ) ey S =S W =hT §M0 =S F*°=F

H™" = H’ Bogo=F
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else
o p0L0° o 0.60% _ 7 % 0,60 _ ar 0,60 _
Pogo=P flg =i hy =h S =S F =F

H(),g”,() — H// ﬂ0’§0 =ﬁ”

Now suppose we have (po,g),SO’g’ﬁ,Fo’g’,Ho’g’i’,flo‘@*,hf)’@*,,Boqﬁlﬁ<p). By
construction (j, ( flo’@*)(,b’om)l/_) < p) is an anti-chain and (j, (K> )(KOIB<p) is a
decreasing sequence. If the anti-chain is maximal below jz(F:;l%)(a) then the

induction on p is finished. So suppose it's not a maximal anti-chain.
Pick f, € (Col(ug™ " < 0)x [TCws ™ i, fo S Jo(Fle)(@) which s

1< j<b(1)

incompatible with (j, ( flo’g’*)(ﬁoy )P <p)and h €(Col(k, k")), which is stronger

than  (j,(B*** )(®)Ip<p)y and B, f, B such that j,(f")B)=f
LW ) (K)=h,.
If p=p+1 then set
"=y, S" F/=F*P0my, ~ H'=H""  p’=p,,.
Otherwise
S"=(7pp,,S"" Vp<p F'<SF* omy, Vp<p H'<H™’
p<p
p’= Upo,;,ﬁ~
p<p
This last union might cause a problem for large enough p. Namely

PO ty) 4y yery O OV DS 0GBV oy .87 F 7 H))

might not be a condition. (in p” there are too many coordinates which can be
enlarged together). The solution is to shrink §” so all these continuations won't be
possible. Let's set

Cyzp = {7 inaccessiblelp> 1> si}. This set is bounded hence C,, U, so we can
shrink §” to §” — ﬂ;,vl»,o(co,gp)'
If there's

Ol g L0,V o) A5 )y 0B g ), 87 F P HO )Y <
PO ) g ey O OV S0 B VSt ) S7 F 7 H )

then
_ 0,¢, * _ ¥ 0,4, * g 040 _ Q7 0,40 _ ’
Pogp =94~ (uo)m,(ﬂg» 7 =1 h" =M §H=8 Fr=F

HO,QV,P = H, ﬁo,(,p =ﬁ’
else

” 0,’*_ 7*E ()q’*_ % 0.5p _ " 0.lp _ .,
Pogp=P" 1 “ =/ hlgp =h| §06r = § FOr — F
H' =H" Bocp=F"
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When the induction on p is finished we have (j,( flo'g"’*)(ﬂ% Ip<p,) a maximal
anti-chain below j, (F<Zg> )(@) and (j, (hlo’g"’ " )(K)p< p,) adecreasing sequence.

When the induction on ¢ is finished we have (j,( flo’f"’*)(ﬂ% Np<p,) a maximal
anti-chain below jz(F<”;g>)(a) for all {<¢, and (j, (hlo’;”’*)(l()lp<p§, {<{y) a

decreasing sequence.

We'll continue with the general case. We have ((f,¢,h")I{< ) a maximal anti-

chain below j, (F<Z">)(a) for all Error! Objects cannot be created from editing field codes.
0

for all Error! Objects cannot be created from editing field codes. and
(,(hEP Y (0lp < P §< §E> a decreasing sequence for all Z"< ¢
If £= £+1 then set

Ue = Uy U Upg,{, , UC ) UC
IS <& /J</J;
Else set
=Uu,, ¢.=UC,.
&g &g

Pick uf =min™{ueT" |[x]- 7z’aOC§IV§ <§,u¢,u§
Let  ((fS5ho*>I¢< {:) be enumeration of conditions  from
[Col (V)@ < i) TTCOA™ 2,100 ) 1x Col (. 12 ™)

1<j<b(0)
which are stronger than f()"* (,u?) (U §)>
Pick f, e(Col(,ug*b(“ < K) X HC(,uO TNl )y, (Here also by .., when

& +e(l,))
1< j<b(1)

e(l,j)=1 we mean K), hlE(COI(K,K+))M2 such that flglz(FJ, >>)(()t),

h < jz(%(:ug’ x) and 57, fl”*’ hlﬁ* such that jz(f1”*)(ﬁ,) =1, jz(hlﬁ*)(K) = h;. Now
set

” __ u —1 ” __ u u
S 71'1)» ,,qu —7pCe F = F%g,> S H” Hw(,>

If there's
Ol U0,V 1) (fE0 ks ), (B vy ), 8" F H )} <
() gy OOV I 10 DB ). F 7 H))
then
— £0.0% _ o hf,o,o* _ h,* Sg,o,o =S’ F§,0,0 = F’
Peoo =4 (u5)<a,</t‘§>> i =h 1 =n = =

H* = H’ Broo=F
else

,(),0* ”7”E ,0,0* o 00 _ ar 0,0 _ .
p.g,o,OZQfléE =/ hf =h 50 =g Fe = F
£0,0 _ ” _ ,
H""=H" [.,,=F

Now suppose we have (p.,,,S*"7 F**? H*? FE0PT pEoP B:oslP<p). By
construction (j, ( ff’o’ﬁ*)(,b’éo,p)l/_) < p) is an anti-chain and (j, (hf’o’ﬁ*)(l()l/_) <p)isa
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decreasing sequence. If the anti-chain is maximal then the induction on p is finished.
So suppose it's not a maximal anti-chain.

Ple fl = (CO] (ﬂg+b(1) ’< K) X Hc(ﬂg +J,ﬂzd_£:({?1)))M’l SuCh that fl S ]Z(F;Z?>)(a)

1<j<b(1)
which is incompatible with (j,( ff’o”f’*)(ﬂio,ﬁ)ll_o< p) and h, € (Col(k, k7)) M, which
is stronger than (j,(hS%? )P <p) and B7, £, k" such that j,(f")B")= f,.

G (W) (K)=h,.
If p= p+1 then set

s | £,0,p 7 _ é0p ”_ £0.p ” _
S = Ty /J’;,o;,S F’'=F o 72 Beos H =H P =Peop
Otherwise
”_ -1 E0.p — ” £0p — ” £0.p
S"=(7sp.,S Vp<p F'<FPom,, Vp<p H'<H
p<p
p// — Up@o’ﬁ )
p<p

This last union might cause a problem for large enough p. Namely
PO ) OO DS S VB B .87 F7 H))

might not be a condition. (in p” there are too many coordinates which can be
enlarged together). The solution is to shrink §” so all these continuations won't be
possible. Let's set

C;y, = {7 inaccessiblelp> 77> ,ug}. This set is bounded hence C;,,¢ U, so we can
shrink $” to §” — 7., (Cs, ).
If there's

ollq U {0, Vo ) 7 10 s OBV o), F HO)) <

PO ey OO DL BB DB (87 F 7 )

then
00" _ pr¥ 0,0" 1,7 0.0 _ ¢/ 00— 7
Proy= q_(u§)<a’<ﬂ?>> f1§ P f, hlf p o h §50P — ¢ F¢oP —

Hf,(),P = H, ﬁé,o,p = ﬁ’
else

” 0, * _ 7* 40, * L 0.0 _ ” 0.0 _ ”
Prop =D flf P _fl hlf P _hl Stf =g F-f P —F
£0.0 _ ” _
H =H ﬁé,o,p - ﬁ’

When the induction is finished we have (j,( ff’o”’*)(,b’;o, lp<p,) a maximal anti-

chain below j, (F<‘;l?>)(a) and (j, (hl‘f’o’p *)(K‘)l P<p,) 1s a decreasing sequence.
We'll continue with the general case. Assume (j, ( flf’z’p *)(,B g,z,p)l p< pz,> is a maximal

anti-chain below jz(F<Z?>)(a) for all Z’<§ and (jz(hf’z’p*)(K‘)Ip<pZ,Z‘<Q is a

decreasing sequence.
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Pick  f, € (Col(u™" < [JCW 0 Dwys  fi<Ja(Fl)(@)  and

1<j<b(1)
h, € (Col(k, k")), which is stronger than (j, (hf’z"’*)(lc)lp<pz, £< () and L. 17,
hl”* such that jz(fl”*)(,b") =fis h (hl”*)(l() =h,.
Set ) )
S”= (Q ﬂ;{ﬁng“"’ V{<{ p<p; F'SF*’om,,
p<pg
V{<{ p<p, H'SH
p” = 7U Pez, C;,={n inaccessiblelp> 77> ,u(;}
¢<¢
p<p
and shrink S” to §” - 7 ,C; .

If there's
ollgU {0,V 0 CF S WA B (Ve ), S  F7 H ) <
PO iy OOV FFE SN (B7 G i ).87 F 7 H))

then
_ ELOT _ o ELO" _ p® ELO _ ¢ E60 _ g
Peco —q—(ug)wwg>> fi =fi h=" =h| S =S Fo*"=F

H*" = H’ Bego=F
else

p;;o — p// flf,é',O — fl//* h]f,é’,o — hlf/* S{,{,O — S” F{,{,O — F”
£LO0 ” _ ,
H*>*"=H"  [.,=p

Now suppose we have (péﬁ,S“’ﬁ,F5’9V’7’,H‘5’§’7’,flf’@*,hf’@*,ﬂgﬁll_o<p>. By

construction (jz(flf’g’f’*)(ﬂém)ll_o < p) is an anti-chain and (j, (hf’g”i’*)(l()ll_o <p)isa

decreasing sequence. If the anti-chain is maximal below jz(F<Za>)(a) then the
¢

induction on p is finished. So suppose it's not a maximal anti-chain.
Pick f e(Col(,ugJ'b(”,< K) X HC(,ug *’,ﬂgdﬁi’({?ﬁ))%, fi sz(fz:l?))(a) which is

1<j<b(1)
incompatible with (j, ( ff’g’*)(ﬁ A g,)ll_o < p) and h, € (Col(k, k")) u, Which is stronger
than (j, (hlém J(KIp<py and p7, fl”*7 hl”* such that j, (fl”*)(ﬁw) =fis

G (B (K) = h,.
If p=p+1 then set

P ELP i pECh v ppECp ”_
N ﬂlf’ﬁms F’"=F OJZ",JWJ),%E H =H P = Derpe
Otherwise
,_ -1 &Lp - "o pECD - ” &Cp
"=y p.,.,S Vp<p F'<F“Pom,, ¥p<p H'<H
p<p
p’= UP;@'
p<p
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This last union might cause a problem for large enough p. Namely
PO, ) O KOS BBV .87 7 H)

might not be a condition. (in p” there are too many coordinates which can be
enlarged together). The solution is to shrink §” so all these continuations won't be
possible. Let's set

C; ¢, =1{n inaccessiblelp> 77>,ug}. This set is bounded hence C;,,¢ U, so we can

shrink §” to §” =7, (C; ).
If there's
Il g U0V 10) (F 0B BB (VG ), S F )} <
PO gy OO FEE SN i ).S7 F 7 H))

then
Pecp == (1) gy, FES pr pEse g gl et pr
H = H’ ﬂg,g,p y
else
Pecs=1" FECH _ pr gLyt géle_gr  péte_ pr
Hé,sip = H” ﬂg,gp :,3”

When the induction on p is finished we have (j,( flf’;’p*)(ﬂ% Dlp<p,) a maximal
anti-chain below j, (F:; g>)(()t) and (j, ( hlﬁvg,p*)( K)lp< p,) a decreasing sequence.
When the induction on ¢ is finished we have {j, (f,"** *)(,55, ;)P < p;) is a maximal
anti-chain below jz(F<:?>)(a) for all {<{. and (j,(h5F Y(Olp<py, §<E:) a
decreasing sequence.

When the induction on & is finished we have (j, ( ff’g"’*)(ﬂé :)IP<P,) is a maximal

anti-chain  below jz(F<Z?>)(a) for all ¢<{, for all ¢{<x and

{J, (hf’g”’*)( ©Olp<p,, {< ;) adecreasing sequence for all < x.

Set C = {u}l&< &},

We claim that CeU,. If not we'll define a regressive function on
R:7z, (T"I[x])— C — & as follows: By our construction if x#e 7z, ,(T"I[x])—C then
there's a unique &< k such that ,ug <u< ,uggﬂ so set R(u) = ,ug. Hence there's £< k
and Ac 7z, ,(T"I[x]))—C, AeU, such that Vue A R(u) =,u‘;. This can happen if
= k or if there's {< {; such that p, = k. By construction neither of this cases can
happen so he have a contradiction.

Let's set
71 ~1 u —1
p=Uu. S$'=x'1"n7C
&k
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S‘I[K] SN[«
Sty =S80y O ﬂnﬁl 5., STET where 7y (V)= .
p<p;
F'(vi,v,)=F"0om, (v, 1)
Foy W sV VS FSP 0mmy o (V,,.,v,) Where 7, (V) = pf.

0 0 N 0 0
H o (V5. V) SHEP vy, v)) where W = 7,0 (48).

We can't just take H'(V,V))<h5” (1)) where V) = To((y) as we need
j,(H")(k, k,) to be in the generic.
So we'll show what we have gained for a close enough condition.
Take h(V),V5) Sh7*” (1)) where V) = 7, (uf).
Take (V') € S', so there's £< & such that wi =15 ,( V). Assume
0llg U 0.V, VLSS 1) Kl i) (B (Ve s )87 F/ Y)Y <
(P g iy DOV UE) F L )l (VD). H(V))),
<,31,<Vgl,‘/161>,s<1l/131 (V/’] <V0)>}
By definition we have f/ < fo"*(ﬂ?), <), f < F:l/lﬂ> O7g p s B <h(W).
By construction we can find {<{¢,, p<p, such that (f,h7)=( £ hety and
J (£ ( fﬁﬁﬂ*)(ﬁm). Hence we can find 7" < f/°, f5 . As b < h< y, and
EM]) < hP” we get that h/” <& . So we get
otlg {40, (V. ) CFo7 S 7Kg DB WU ST F L HOY <
(P gy OOV ) f5 747 0 s )5S ),
<ﬁ1’<1/6 ‘ﬁ> S<‘/f1 <‘/51 <V0 >}—
Pcp U)oy OO DL S FES ) (S ey,
<ﬁ§,§,p’< ng ,,u?“”>,S§"’V’p,F§’§’p,H§’§’p>}

By noting that (u,) = (u¢)<a<ﬂ?>> we get that

B
ollg L (0. CVo 2 FE4 1 BB VLS F HO) <
Petp O ) oy O UOLVG M S 57 ) ARG S 1E0)),

(Beg (Vo2 pilise ), 540 FE40 540

hence by construction
Pegp U(u§)<a,<,,g>> U {{0,( I})O,ﬂg>,<f0¢,é“,f1¢,sﬁp >’<h(;f~§’h1§,§p W,
<ﬁ§,§,p7< Vg;i;p ,,a?“”>,S§’§’p,F§’§p,H§’§’p>}IIo-

which give us
(P g iy DOV ) 5 757 O 5 B )

</31’<V6 W) S<l/31 <‘ﬁ1 <‘p>>}”0
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by setting flm* = fléé:p’k Oﬂ.ﬁlﬁ;gﬁp we get
(pl)cglqlfl) (% {<O’< ng ‘}1)>v<f0,vf1;,>’<h1,’}7<v?>>>’
) ) 1 1 1
B A >’S<%fl>’F<|/f‘>’H<l4>>}”O-
We'll summarize what we proved:
For any j,(h)(k, &)< j,(H")(k,k) we can find j,(h)(x,&}) < j,(h)(K, k), Py,
S', F', H' such that if
o Il g U0, ve V) oo 0 g 0 (B v vl ), 87 F/ H )} <
(p1)<'3],‘/1/31> U{<0’ <V(())’V10>7<f0“* ° ﬂ’-[)’],a(vlﬁl )7 F<L1/31>>’<h(t)t* (Vlo)?h(vlo)>>7
B i Hi)
then there's f,””"Il £ such that
(P05, O KOV VDS AR YD),
A A 1 1 1
BV VNS ) Flo H MO,
As we've been working in V? this means we can take the i (E )(k,i(k)) from the
generic filter J/. So now we can set H'(V/,V)) =h(V,15) and when we go back to
V' we have: If
O-”qu {<0’<Vg’ ‘}1)>’<f()/’fl/*>’<h(;’hl,*>>’<ﬁ’<‘/g" Vlby>’S,’F,’H,>} S
pl U{<0’<V8>’<f0u Oﬂﬁl,a>’<h(l)ll>>’<ﬂ1’<‘ﬁ0‘1>’S1vFl’Hl>}
then there's "Il f”" such that
(P gy & OV VIS A5y HL ),
A A 1 1 1
BV VNS ) Flo H MO,
and therefore there's f,”" < £, f,””" such that VS’ > &

(P 5 iy DOV VS 17O ) (5 HL D)

<ﬁl’<vgl ’ VIBI>>’
4 g g ~1 1 1 1
<ﬁ’ ’< ‘{ ’ ‘/‘f' >’ ﬂ.ﬁ”'ﬁ]S<‘ﬂ>’F}‘fl> Oﬂﬁ”vﬂl ,H<‘}l)>>}”0.
With this we finished with the 1st level.

We'll continue into the higher levels. As the proof for the 2nd level is a degenerate
version of the higher levels we'll show how to continue with the 3rd level. So we're
assuming that we have

P> VOV (S 0 o0, ), (B (Vi ), S F2 L H )} <
PO OV 07 0oy )< B,< Vo >, S F' H' >)
such that if
allg U (€0, (Vo VI VDTS 1S ) Chg b ) KB VW V), S7 F7 HY )Y <
Py VL0V fo 0y o).l ) By (Ve ), % F2 L H? )}
then there's f,”Ilf;" such that

(p2)<ﬁ'z,<l/fz,l/f'>> U {(0,( ‘})0’ V?? ‘;)2>’<f0,7f1,’f2ﬁ/>7<h(;’H<2V?>’Hf‘,?,v%»,
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(,6’2,(1/{,”2,1/1"’2,1/” ) SM“ B2y’ F<2v“2 N <2¢3,¢£>>}”0‘
and therefore there's £, < f,, f,”" such that VS’ > &
(P2) g o gy DOV VL VDS O ) Sl Ly ),
<ﬁZ’< 0 > 71 ’l/g’7>>
i <V3 ’ Vlﬁw’ Vﬁ 2 ﬂﬁ” B <\/*°,1/’2> Fﬁ/" V) 07 p, ,H<2V(1)’¢2,>>}||0'.

Let's go into the 3rd level.
We'll well order S*I[«1* such that (V,,, V,,) P (V. Vi) = Vo, S V,.

Set <ﬂ§3 , ,ufig} =min® S°I[ k]*. Consider the condition
(p2)<ﬂ2’<ﬂgﬁ,ﬂ;’ﬁ>>U{<O’<‘/8,ﬂglaﬂ82>
(fo" o, a(ﬂ )Fzﬁz>(.uoz) ot
<hu*(/’t01) </l >(ﬂ02) </l ,U >>>’
B VG G355 0> S s> Foe i Heg )

<ﬂ0 ﬂ(]z) <ﬂ01 ﬂ0§> (Uoy-Ho2)

)

This condition is in P,. Starting with this condition, working in V* and doing the
same work as we have done for the 1st level we can find a direction extension of it

P O{0,(V), to Mo ),
fe" 075, a (U5:)s F L (,U D F 0T, 4, )s

<,u ) (M7 o3
<h(;l*('u01) H(il(] >('u02) (ﬂ /‘02>>>

CHos KVl 000, 8™ O H) )
such that if
o 11 qU{{0,(Vy. tp - Hoy» V),
oS f 1)
Chys b1 RE)),
(B Ay G105 V5 ) T F/ H )} <
P U0 Vo o Mo,

(fe" O7p, o (ﬂm) <ﬂ >(,U )F;Z/hﬂ/h>07zyoﬂ0>’
<I’l“ (,u()l) Hiun >(,u(),2) Hjun /402)>>

(For (Ve a5 13, 8™ F 0 H))
Then there's ;7 Ilf;" such that
p<’7<,,<vzy°>> U {{0,¢ ‘)(;’lug,l’:ug,w V;),
<fo,’f1”fz,’f{”*>,
i 1 32 ),
ForCVe iy M3y VI 1 S s F Hip Y I O

Set
Po =PV =Py e )

Co={(V,,)eS* IV} >y, Vv, orv,aren'tlegal for p,,}

-39-



Possible values for 2% and 2%

Let's continue with the general case. Hence we have (p;,, 7§,C§,(,u§21, ,ué’?z) 1{< &),
E< k.
If £ is limit then p” = Upigelse §={+1 and weset p” = p, .
<&

Set

Cr/ — U C;

<&

(W) = min (S [T = C)

B’z y forall {<¢&

S =5, S3p 1, =€)

<ﬂ§1’ ;2
F’=F’ 07y
whatsy O 5,
H// — H2
(/‘%pﬂ%ﬁ

Doing the same work we have done for the 1st level, this time in V* we can find
P OO Ve ey e )s
<f0’4* Oﬂﬁz,a(ﬂg,zl)’ F;2 (IU?,ZZ)’ Fz/h ) Oﬂyg,ﬁz >’

ﬂ?ﬁ) (MG M)
u* 0 2 0 2
<h() (luﬁ,l)’H(ﬂ%l)(ﬂé,Z)’H 0 0 >>,

(,”5,1 Mer

YoV ), T PP HY ) <
” 0 0
(p )<ﬁ2’<ﬂ?1aﬂ?lz>> U{<0’<‘})0’ﬂ§,17ﬂ§,2>,
3 Oy (HE) F (). Fiy )

W)

<h(§t*(,ug,1)’H20 (,ug,z)’Hzo 0 >>’

(Ugp) (Uepter)
(B AVy ey 1), S” F” H”))
such that if
o Il qU{(0.(Vo. 1z, 55, V5),
o f 1)
Chys bl RE)),
(B (Vo byl V50T F7 H )Y <
P U{{0,( Vg,ﬂg,l ’ﬂ(},z )s

u* B 2 b 2
(" O, o (M) Fl) (D Fl

<h(;l*(ﬂ(;,l)7H<2'ngl>(ﬂ2,2)7H<2ﬂ<§lvliﬂ<§lvz>>>7
(Ve Vg 05 ). T F¥  H))
Then there's "Il f;" such that
(P),, ey, O O Vo ey ey VA),
SR,
B H ),
(e Vil 5 VNS5, JF2E VHS Y Il 0

VEY T Y

) Oﬂ:}’;»/”z >’

(
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We set
Pae=P" (P =Py i)
C:={(v,»,)€S* 1y >4}, and v, or v, aren't legal for p, .}

When the induction is finished we have (p, ¢, 7, Cy, (,U’gﬂ ,,U?,zz) | £< k). We'll combine
everything into one condition. Let

P = U Ps¢

&k

B2y forall <k
C=17,, {<ﬂ§3,u§3> &< x)
S3|[zc]2
Sovy = (z,, £,575)NC where 7, , (v, ) =(uh, V2)
FI[&T’ = F?I[x]* o7y 4
F<3v vy = = F*¢ where 75, (Vi V5)) = </J§,21’ Vg2>
H [ k) = H*I[ kT
H;, . < H* forall & suchthat (V,))=(u},, V.,)
We get that
Py OOV (S 07y oK N (B V), ST FAL HY S
mumm&mO%»wmwxﬁmwﬂwn
Suppose now that
ollq U (K0, (Vo, VI Vo VOV FL L ) (g ),
wmﬁlfﬂﬁyﬁH%<
Py OOV (S 07y (N Bs V), ST F )
By definition we have
ollg U {<0.{Vo, Vi, Vau Vi) CFS R £ gl g ),
BV W V) S\ F HY)) <
(pﬂwwfﬂﬁﬁwaKo<%’w’@’@>
<foq4f><muMF%ﬁuﬁ Flo )
(g (VD). H (V)DL Hy ) (V) Hz) o))
<ﬁ3’<v3 ’ VIB ’ VB ‘ﬁ > S<‘/h ,}3 ‘/h> (fa l/}z"f3>’H<V?"}§,Vg>>}
By construction of S* there's £< & such that 7, ((V*, /) = (,wgfl, ,u?f2> hence we
have

ollq O {0,V % s s S £ L ) B I s D),
BAVe VLV V.S F H')} <
(P3)<ﬁ3,<,{3,‘/2%3,‘/;3>> U {(€0,¢ Vg’ﬂg,pﬂ%,z’ ‘};%
" Oy (), Fpp (), FP (A1), 5 ),
Chy” (W) Hy  (Ug), HY (V). HIED),

By W .S Foi )Y <
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0 0
(p3'§)<ﬁz,</t§€,ﬂ§?2>> L {{0.( Vg’ﬂf,l’ﬂg,ﬁ»
u* 5 2 B 2
<f() Oﬂﬁz,a(ﬂg,l), F;ﬂgll>(ﬂ§’22), F;ﬂ/gllv/‘?z) 07[75,,6’2 >,
u* 0 2 0 2
(hy () Hoy  (en) Hey o 0 0)s

<7§’< Vgg nugi ’ﬂ;ﬁz >’ Slé? F3’§7 H3’§>}
So from the induction we get that there's f3’”* I f3'* such that
(p3,§)<ﬁ2,<ﬂzg,ﬂ/g"/3ﬁ>> U {(0,( ‘}(;’ﬂg,wﬂg,z’ ‘}3)>’
oS f5 7,
<h(;’h'l”h?”H<3;§>>>’
(VorOV MG M V9 S 0 s SHOE DY IO
hence
(p3)<ﬁ'3,</t?,,ﬂ?2,l/f3>> U {{0,¢ ‘}(;’ﬂg,wﬂg,z’ ‘;z)>’

SIS E
7 1.7 1.7 3
SRS H<ﬂ‘;1,ﬂ‘;zl§> %
By Ve i il VD),

3 3 3
Sttty ot . my B i 4110
After working on all levels we'll have < p,,3,,S",F",H"ln < @w>. We combine it all

into one condition by setting
p=Up,  B28, S=(\7,,5" FI[&]" = F"I[ &]"

Hl[x]" = H"l[x]"
giving us the required
pU{<0,< V) >.< f) 0y, >,<hy" >>,<f< Vo >,S,F,H>}.
0
Lemma 4.24.2: There are p*, £, S*, F', H such that
P OO oy WS <Vl 5.8 F LS
POROWO S o Ty ) N BVE). S FLHDY

and such that if
N gUiO. W0 VO Foreos fos B b ),
(8.2 ,... vT' F' H)}<
P OXOVD S o VBN (B VST F L H )]

theng Il o
Proof: Set B,=j, (f).In M, define

D} = {{frr hos (VDI < o (SN @) By < o () (K)
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[ h(EYBB) hoa(L) DS oz (F) g )(B) by < jp (H) (K, K,)
Vyzy
(P g, 1580 Y
OV KK ) fon fio f Ofa () g 0o By By o () s >>,
<ﬂ27< ‘/8”6”61»,
(Vv
jz(ﬂ);/l,ﬁ’z J2(8) 53> 32 (F) 55, 0o (7)) ’jz(H)<K,K1>>}”j2(O-)}

D<> = {<f1’f2’h1>|<f1’f2’h1>ED(,) Vv
V(S h) e D<,> (LR £fL )}

Back in V take f,, f,, h, such that
G2 (EYB B, Js(F)B BB o (H)(K, k) 2 < fy, fr.hy >€ D, NG,

which is possible since

(L(F)B.B), js(F)B.B. 5, j, (H) (K, k,)) € G,.

(Recall from the previous section that we arrived to the model M, by forcing with a
K, -closed forcing and note that the forcing the dense set D,, resides in has ,-c.c.
hence indeed the generic we have built meet this dense set)
Now take appropriate . f. fo. h such that f =j,(f)(B%B"),
Fo= B (FDB By = o (). k) where B = j, (5.
Lasm—qfs
FOy p15) = fi(tys 1)
F Uy g 1) = oty 115)

F (s fly s fhss ) = Foﬁﬁ,u’ﬁ(ﬂl,ﬂz,ﬂ:;,---)

H W) v =hov)
H W v),..)=HWV v),..)

Ay = (v, v,y € S IKTIA Sy, ) <(fy 07y (V) F (1))
Iy I, <F L.
Khy, 1)) < (B (L), H (W, )
Vyzy
(p)wwg T (VDT (V1)) e
KOV V) fos fis fo O, )by HE ),
(BAVG 7y 5 (V) Ty (Vo)D)
(7,(V(7)/, V), ﬂ,ﬁos{fw, (o) O 0 <v° ‘;]>>}”(7}
A =S"I[k]* - A,
Set S° —S’OIA, where A eU? . andlet F*=F°IS°, H' = H’OIJZ' (SO).
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We'll see what we gained with the condition
POV 01y (B O BAVIN(B (V) ), S FO HO)Y.

Assume that we have
allg U {0, (Vo VI VO e 0 ) kg ),
(YA VLV VLT F H ) <
P OOV o 7 NN (BN (B vl ), 8 FO H))
As
PULO)L(L 01y . 0D (BAVINAB (W), 8 FO HO)y <
PULO, () (fi 0y ), () (BAVEY, S, F L H))

then
Allq U {0, (Vo VL V) (F iy )y ),
(. v Vi) T F/ HY) <
PUKO V)" 0750,y ) (BAVE). S, FL H))
hence by previous lemma there's £, < £, such that V> 7
(D) oy OOV VLS £ £ O )05 H . (5D)),

(5%, A V),

v <V(7>/’ Vy> ﬂyﬂ AN F<‘/f>07[7/ﬂ’H<v° v°>>}”0
by our assumption there's (v, v,) € S such that /= Ty (V). V=r , ;(¥2) hence
vyzy
(P g oy oy O HO VoV LSS LS 0, ) LB )

(BAVE Ty (V) Ty 5 (V2))),s

VAV v ), ”;lﬁoszg v2>vF<v V) Oﬂyﬁm <‘;) v°>>}”0
This means that S°I[ k]* = A, and so for each (V;, V,) € S° we have

FoV V) Fi (B V)Y SR 07 (V) F (M, 1))
YV v) fy M) SEY ()
<hy(V,, V,),h (v, v,) ><< (V) H* (V) , V) >
such that V)" > ¥(v,, v,)
(p)<ﬁ,<1{f,7rm<vl),zrﬁovﬂwz)» ~
{<0’< ‘})07 ‘}1)’ 1/02>,<f0( Vi, Vz) f1( Vis Vz) f;(vl’ V2)O7Z'}/,},(V],V2)>,
Uy (Vi V) B (Ve V) HY ),
(BAVE Ty 5 (V) T 1 (V2))),
<7”<Vg > Vl’ V2> ﬂ;ﬁls(v v>’F<v v>07z A (V' Wy >}”O-}
thus we have V' > j, ()(S.5)
(12(P) g, 8 Y
{{0.(V). . x,),
G BB o FIB B i (EDB B0, .
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(BB B s (BB B,y (H) ey (D),
By AVe- BB
VAV VD,
jz(ﬂ);lﬁg jz(S,O)wo!ﬁloyjz(F,o)('gJ!ﬁ% sz(ﬂ),ﬁg,jz(H'°)<m>>}||j2(0)-
This means that
BB dns Ga (DB BN G (DB BN o () (B By € DY,
By construction
(L UDB B oy Go (LB B (DB B o (BB By <
Ga (FYB B s G (F B BB, o (H ) (K, K))) € D,
hence
G (FYB B s Gn (F)B BN BY), o (H ) (K, K,)) € D,
Literally this means there's (f,,h,) < (jz(fo“*)(a),j2 (h)(K)), & such that V& > &
(L (P) s, 5 Y
{(),(0),(V;, &, Kl>,(fo,jz(F'O)(ﬂo,ﬂ?),jz(F'O)(ﬂo,ﬂ?)sz(ﬂ)wg(—)%
Chos o (H™*) (K, K)), o (H ) (K, K (),
Bor V- BB,
CRUANANTON
I (W55, 01(8) ppy0 02 (F) s 5y 0 (D g g Jo (HD e 1L (0)
Choosing a large enough &, setting j,(f, )(8) = f,, S”°= MOSO F”°=F° 0%
H”"=H" and allowing j, (h,)(k) < h, we get
(]2(p))<52,<,s,5)) U
{2 (0).( Vo, &, &) ), iy (fo )(D), jo (F7°)(8,6)), Jo (F7*)(6,6)(-)),
(a (h)(K), jo (H”*) (K, K,), o, (H”?) (K, k) (=),
B (V- B.BY)
(8,:(V0,8.8), 1(S”) 5590 o (F )55y 2 (H*) ) Y15 (0
Set
B, ={(v;,v,)€e S”Ol(P)<5,<v1,v2>> o
KOO VL VDL fy (W)L F7 (W, ), F7 (1, 1) (),
(hy(V)),H" (W, W), H”ng( )
BV, Z55(V1)s s p(V2))),
(S Vi Vo) 8Ly Fy HIY o MYlI=0)
B, = {< v, 1, >€ S°1(P) 1501,y Y
OV, VI V) fo (V)L F7 (Vi vy), F70 (v, vy) (5)),
(hy(V)),H"* (W], W), H';?‘p>( )
BV 7,5 (V). T, 5(V))),
(Vo Vi S0 R g;.? p)I=—0)

Take i €2 such that B, € U; and restrict S”° to B,. By definition we get
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all p U0, (V) (fy s (g ) (B VAN ( OV, 8”0, F 7 L H )} <
POV f Yo <hy™ > (BAV). S, F,H >}

as needed.
We'll sketch how to continue into the next level.

In M, define for each (v,,v,) € S°
Dy vy = fss oz (FO() 1)
K for Fir Y <UL 07y (W), F (V1) s (FY ) (B))
3 oIy o) < (g™ (V) HO (V) V), o (HL 4 )(K))
[ S (EL BB hoa(FOD S s G (B ) o ) (B)
h<jy(Hly y )KK) VY 2y
(j2(p))</5‘2‘,<v1,v2,/i“,ﬁ‘f>> -
{<j2(0)’< ‘})0’ V?’ ‘/027’(7 K1>’<f0’f17f27f37f4* Oﬂ-;/,;/>7
Chgshy Ty o CH ) ey (5D,
(Br(Vos Ty, (V). Ty 5 (V3).BS))
B (Voo v v B B))
TV VD, (D)) g (S0
RS ) g 0, 00 (T s o (H Yy 5 ) ey W2 (0))
D<v1,v2> ={(f5: fas B S50 fashs) € D<,v1,v2> v
VL FL) € DYy Ly (S5 1) £(f50 fin )

Back in V take £, £ p{"") such that
<J'2(F<?,l,v2>)(,g)ngl)),js(E(:,l,v2>)(ﬂ)vﬁ?vﬁg),jz(H&l!@)(K, K))) 2
<f3<"1»vz>,f4<V1'Vz>,h§V1vV2> >c D<VI,V2> mGS

which is possible since
<j2(E"VI,VZ>)(ﬁ°,ﬁ?),j3(E"VI,VZ>)(ﬁ°,,6?,,6’2),jz(Hf’Wb)(K, k,)) € G;.
Now take appropriate /5, f;"“’”, fjvl Yo ﬁ;vl *2) such that
A = BB
£ = (BB
W = () K)
where £ =j (8'). We can take one such g for all (v,,v,)eS° due to the x*
directness of our extender.
Let S =7, ,S".
F''(V,vy)=F oy (V. )
F'' (v, vy, ) =F 01y (V. ¥y, V)

1 7,
F'v,,v,,vy,v,) = £ (v,,v,)
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1 7
F’ (VI,VZ,V3,V4,V )_f‘4<v1 V2>(V4’V)
1 O
F, (V17 sz V3’ V4’ V57K )_F ﬁ()(vl’ sz V3’ V4’ V57K)

H' (W, ) =H (), v5)
H' (A, A, V) =H (W, A, W)
H' v viviv))=hw)v))

H' (VWA VLK)Y=HY (VB A VLK)

Aév "= Vi, V4>ES(V V) |[K]2|
3<f0’f1’f2»fz><<fo o7y (VO F (Vi ). Bl (V)L F L (Vs V)
E/ETNE AN G
Hhy sy hy) < (SO H (WL VDL HY ) (B HY ) O4, V)
vy zy
(p)</f<v{,’7zﬂ, ST ()7 (V) Ty (1)) ~
{<O<W VLIS (S fis fos ou i O, ),
<ho’h1’h27h3 H(v1 V. Vs, v4)(_)>’
BV Ty J(VD)a Ty (V1) Ty ((V3). Ty (VD))
B Ty p (W) Ty (1), Ty 0 (V). 7y (V)
i v,
7, 58, F’) ) O, 5 Hjy iy p )}l O)

(Vv 3.0 2 T (v, v,y
A(v1 V) — < >|[K] A(()vl,w)
vl v,

Set Siy = S0l A where A eUZ. and let F\, . =F, IS ..
1 gl 1
Hiy o =Hip p 175 0800

The new condition is

PUO.00).(fo" 07y ). Chy ),

(BAVENAB (AW,
BV, F' H"Y)

and by working on all levels the lemma is proved.©
Let G < P be a generic filter. As P has the x""-c.c. all the cardinals > k™" remain

cardinals in V[G]. We show know that k" is also preserved.

Claim 4.25: x* remains a cardinal in V[G].
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Proof: Suppose k* had been collapsed. As cfy s k=@ we must have that
cfy k" =< k.Let p'll-=g: 1 — & an unbounded function” in V[G]. Take p < p’
such that max p° > . Using the same method as in the first sub-lemma of the Prikry

condition proof, there's
qOkJ{<051705;](‘!)5;](‘[7’k Oﬂa(],mc(p)Sh/p,h/p*>5<a0,q0 5S0 FO H0>}< p
such that if there's {'< x*, r such that
§0)=¢ —lr<q, U0, p°, £ 7070 (g S  f 7 Oy ey FOh” L H®))
then 37" < £, such that
(q0)<a0!ra> U{<0’r0’fr’f”*’hr’H00 0(_)>’
s°, F0 « O

(mc(r) rt mc(r) a, —q me(r), o ’Hroo—qg >} I _g(o) - é/ ’

Now, assume we have A < u and
<CI§U{<O p fp fp a;mc(p)’hp’hp*>7<a§’qg§’S§7F§7H§>}|§<ﬂ'>

Choose ¢, U{{0,p°,f",.f" ox h’ WY, ,qf,S* FA HY)) which is <

a;,me(p)

from all these satisfying the same thing for §(/i). After finishing the induction we

have
{q§U{<O p f fp a mc(p)’hp’hp*>’<a§’qg§’sévFva§>} |§<,U>

Take quU {(0,p°, f",f" ox h? ,h"" ) {(e,q% S,F,H)} which is < from all

a,me(p)°
these. Suppose now that there are r, < u, {< k" such that
g(é) = é"\_”rsqu{«)’po’fp’fp* O”tz,mc(p)’hp*>’<a7qa’S7F7H>}

then

&) =C-Nr<q, U0, p° f 7 f 7 0 Ty o b h V(g8 S%, F HE))

so from the construction we have f”" < f"" such that
(qf)(a», OO TR Ho 0( ))s
S¢,F;

g7 or

me(r), e ° f“_qg> I _g(f) = é,

(mc(r),r™

mc(r) o

from which we get that

(@), >U{<0r ST H (),
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<mc(r)7rmc’ ﬂ;rlu:(r),aS’ F”_qa Oﬂmc(r),a’H,O_qO >} ” _g(g) = ;

r

This means that the value of gr(f) is decided by condition of this form. However,

condition of this form can force at most x different values and so these values are

bounded in x*. This it true for all £< u and as u < k we get that g[G] is bounded in

x*. Contradiction. ¢

Let (7,ln<w)=U{p"IpeG}. Denseness arguments give us that this sequence is

unbounded, that Vn < @ the cardinals between 7.""*' and 7

n+l

are collapsed and that

VO<n< @ 7 is collapsed. 4.19 shows that the other cardinals aren't collapsed and so

. . +k
K remains a cardinal also. Denseness argument show that 2™ = T;ﬁ?ﬁ) and because

7" is collapsed for n>1 we get in fact 2% = 74"

n+e(n,1)"*

Another denseness argument will
show that (2%),,;, 2 ™. Noting that V[G]l="2" = k" and using the same technique

m

used to show that x* isn't collapsed we get that (2%),,, <IPl= k™" we get that

(2%)y6) = K. We finish the proof by forcing in V[G] with Col(X,, 7;).
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