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Moti Gitik1  and  Carmi Merimovich2 

Department of Mathematics, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel 

 

Abstract. From GCH and Pm( )κ -measurable (1 < <m ω ), we construct a model satisfying 2ℵ =ℵn
a n( )  and 

2ℵ
+=ℵω ω m  for monotonic  a:ω ω→  satisfying a n n( ) > . 

 

1. INTRODUCTION 

Determining the possibilities for the  function κ κa 2  is still an open question. 

History of the work done on this problem can be found in [G-Ma], [C], [Sh2]. 

In this work, which is a generalization of [G-Ma], we prove the following: Given 

1< <m ω and a monotonic function a:ω ω→  and assuming that κ  is a Pm ( )κ -

hypermeasurable cardinal, we can build a generic extension in which 2ℵ =ℵn
a n( )  and 

2ℵ
+=ℵω

ω m. For m > 2  this assumption is needed by [G-Mi]. For m = 2 using [ ]G1  one 

can reduce the assumption to o( )κ κ= ++  which is the best possible. 

We tried to make the paper as self contained as possible, assuming that forcing 

technology and large cardinals techniques are known. 

The structure of this work is as follows. In section 2 we give definitions and 

notations which are either well known or are from [G-Ma]. In section 3 we'll extend 

V  in order to have generics we need. In section 4 we'll define the forcing notion 

which actually does the job. 

This paper is a somewhat generalized version of the 2nd author M.Sc. thesis done 

at Tel-Aviv university under the direction of M. Gitik. The 2nd author would like to 

thank again M. Gitik for his help with this work. 

                                                           
1E-mail: gitik@math.tau.ac.il 
2E-mail: carmi_m@cet.ac.il 

2. EXTENDER PRELIMINARIES 

Let κ  be measurable cardinal and assume � <�A,  is κ + -directed partial order. 
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Definition 2.1: A sequence �� ∈ � � ∈ ≥ ��Uα α βα π α β α β| , | ,,A A  of κ -complete 

ultrafilters over sets of cardinality κ  is called Rudin-Kiesler directed commutative if 

(1) πα β α β, ( )− ″ ∈ ⇔ ∈1 X U X U  

(2) ∀ ∈ =α πα αA , id  

(3) ∀ ∈ > >α β γ α β γ, , A  there's X U∈ α  such that 

   ∀ ∈ =ν π ν π π να γ β γ α βX , , ,( ) ( ( ))  

(4) ∀ ∈ ≠ >α β γ β γ α β γ, , , ,A  there's X U∈ α  such that 

  ∀ ∈ ≠ν π ν π να γ α βX , ,( ) ( )  �  

Definition 2.2: An ultrafilter U  will be called P-point if for any f :κ κ→  there's 

X U∈  such that ∀ <ν κ  | ( )|X f∩ ″ <−1 ν κ .  

Definition 2.3: We call �� ∈ � � ∈ ≥ ��Uα α βα π α β α β| , | ,,A A  a nice system of length 

A  if  

(1) A has a minimal element, 0. 

(2) �� ∈ � � ∈ ≥ ��Uα α βα π α β α β| , | ,,A A  is Rudin-Kiesler directed commutative. 

(3) U0  is a normal measure over κ . 

(4) ∀ ∈α A Uα  is A P-point ultra-filter over κ . 

(5) ∀ ≥ ∀ < =α β ν κ π ν π π να β α β, , ,( ) ( ( ))0 0  

(6) ∀ ∈ ∀ < =α β ν κ π ν π να β, ( ) ( ), ,A 0 0 .�  

Definition 2.4: We'll write ν0 instead of π να , ( )0 . Note that it's independent of α. 

Definition 2.5: ωκνν <∈�� ][,,0 k�  will be called 0 -increasing if ωκνν <∈�� ][,, 00
0 k�  

Definition 2.6: Let s ∈ <[ ]κ ω  be 0 -increasing. We'll say ν  is permitted to s  if 

ν0 0> max s . 
Definition 2.7: Suppose ∀ <ξ κ  Aξ κ⊆  then ∆0 0

ξ κ ξ ξζ κ ξ ζ ζ
<

= < ∀ < ∈A A{ | }. 

Note 2.8: ∆0 is a kind of diagonal intersection and if ∀ <ξ κ  A Uξ α∈  then 

∆0

ξ κ ξ α<
∈A U . 

Notation 2.9: 

 Col dom ran( , ) { | , , }α β α β α= ⊂ ⊂ <f f f f  
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 Col dom ran( , ) { | , , ( , ) , }α β β α β ξ ζ ξ α< = ⊂ × ⊂ < <f f f f f  

 C dom ran( , ) { | , , }α β β α α= ⊂ × ⊂ <f f f f2  

Definition 2.10: Let ρ: P P1 2→  be an embedding of forcing notions and G P1 1⊆  filter. 

Then 

{ }2111221 )( ppGpPpG ≤∈∃∈>=′′< ρρ  

 

Fix 1 < <m ω  and assume we have an extender E = � ∈ �+ <E aa
m| [ ]κ ω  and its' 

natural embedding j V M V1 1: ( , )→ ≅ Ult E . Moreover assume κ κ+ +=m m
M( )

1
 and 

M1|= “2κ κ≤ +m ”. We iterate j1 to get j M M1 2 1 2, : →  and we set j j j2 1 2 1= , o , 

κ κn nj= ( ) . 

Claim 2.11: There's a nice system U A A= �� ∈ � � ∈ ≥ ��Uα α βα π α β α β| , | ,,  on κ  

where A ⊆ +κ m, A = +κ m with a minimal element κ  and M V1 = Ult( , )U . 

Proof: As M1|= “2κ κ≤ +m ” we have that X m= < ≤ +{ | }α κ α αα2   inaccesible  is 

E< >κ -large set. Build by induction a function T
onto

: [ ]κ κ κ→
−

<
1 1

 such that ∀ ∈α X  

T m

onto

m: [ ]α α α+
−

+ ≤→
1 1

 and T ( )α α= � �. We get that j T j j
onto

j
1 1

1 1

1
1( ): ( ) [ ( )] ( )κ κ κ→

−
<  and 

j T1( )( )κ κ= � � . For our purpose the restriction of j T1( )  to κ+m  is the important part. 

We have j T m m

onto

m
1

1 1

( )| : [ ]κ κ κ κ+ +
−

+ ≤→ . We define a partial order on κ κ+ −m  by 

α β α β≤ ⇔ ⊆j T j T1 1( )( ) ( )( ) . Clearly this partial order is κ + -directed. We'll take 

A = < =+{ | min ( )( ) }α κ α κm j T1  with the same partial ordering. On A the partial 

order ≤  has κ  as a minimal element. For each α ∈ A  define X U j X∈ ⇔ ∈α α 1( ). 

The definition of πβ α,  for β α>  will be done in 2 steps. First we define πβ κ,  and then 

πβ α,  for β α κ> > . Let β ∈A. Set π ν νβ κ, ( ) min ( )= T . Note that this definition isn't 

dependent on β . We get j j T1 1( )( ) min ( )( ),π β β κβ κ = =  as needed. Let κ α β< <  and  

set b j T= 1( )( )β . Hence  
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V M

N

1

β

j

i
kβ

β

1

 

i V N V U

k f j fU

β β β

β β
β

: ( , )

([ ] ) ( )( )

→ ≅

=

Ult

1

 
k i T bUβ β β

( ( )([ ] ))id = . As [ ]id Uκ
κ=  we get that k kβ β β κκ π κ( ) ([ ]),≤ =  hence 

crit( )kβ κ> . As b ≤ κ   we have that ′′ =k i T bUβ β β
( ( )([ ] ))id .  We set i T bUβ β

( )([ ] )id = ′  

and we know that ′ ≤b κ . Setting a j T= 1( )( )α  we know that a b⊆ . Hence there's 

′ ⊆ ′a b  such that ′′ ′ =k a aβ ( ) . As ′ ≤a κ  we have that ′ ∈a Nβ  giving us k a aβ ( )′ = . 

By setting [ ]f aUβ
= ′ we get that j f a j T1 1( )( ) ( )( )β α= = . Hence j T f1

1( )( )− =o β α . 

We note that 

 j T f j1
1

1( )( ) ( )( ), ,π β κ π βα κ β κo o− = =  

hence X T f U= < = ∈−{ | ( ) ( )}, ,ν κ π ν π να κ β κ βo o1 . Thus we define 

 
�
�
�

∉
∈

=
−

X

XfT

νν
νννπ αβ

))((
)(

1

,

�
 

This gives us ∀ <ν κ  π ν π π νβ κ α κ β α, , ,( ) ( )( )= o  for β α> . The last thing to show is 

that M V1 ≅ Ult( , )U . Let x M∈ 1. Thus x j f a= 1( )( ). Without loss of generality 

min( )a = κ , so we can pick α ∈A  such that j T a1( )( )α = . Hence x j f T= 1( )( )o α .� 

Lemma 2.12: ′′j1A is dense in j1( )A . 

Proof: Let δ ∈ j1( )A . Then δ α= j f1( )( ) for f :κ → A. As A is κ + -directed there's 

γ ∈ A such that ∀ < ≥ξ κ γ ξf ( ) . So δ α γ= ≤j f j1 1( )( ) ( ).�  

Proposition 2.13: ′′j2 ( )A  is dense in j2 ( )A  

Proof: From elementarity we get that ′′j j1 2 1, ( ( ))A  is dense in j j j1 2 1 2, ( ( )) ( )A A=  so 

from previous lemma ′′ ′′ = ′′j j j1 2 1 2, ( ( )) ( )A A  is dense in j2 ( )A .�  

Claim 2.14: M j f j f V2 2 1= ∈ ∈{ ( )( , ( )) | , }α α α A  

Proof: Let x M∈ 2. Then there are h M j∈ ∈1 1, ( )δ A  such that x j h= 1 2, ( )( )δ . Due to 

denseness of ′′j1A in j1( )A  we can assume that x j h j= 1 2 1, ( )( ( ))γ  for γ ∈ A. Now 

there are g V∈ ∈,β A such that h j g= 1( )( )β . So x j j g j= =1 2 1 1, ( ( )( ))( ( ))β γ  

j g j j2 1 2 1( )( ( ))( ( )), β γ = j g j2 1( )( )( ( ))β γ . The last equality is because 
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β κ κ κ< < = =+m j j1 1 1 2( ) ( ),crit . Now take α β γ≥ ,  and define 

f g( , ) ( ( ), ( )), ,ξ ζ π ξ π ζα β α γ= . We'll get x j f j= 2 1( )( , ( ))α α .�  

Definition 2.15: X U X U U∈ ⇔ � �∈ ∈ ∈α α αν ν ν ν2
0 1 0 1{ |{ | , } }  

Note the above is equivalent to X U j j X∈ ⇔ � �∈α α α2
1 2, ( ) ( ) . 

Proposition 2.16: For any α ∈ A  { , [ ] | }� � ∈ < ∈ν ν κ ν ν α0 1
2

0 1
0 2U  

Proof: This reflects the fact that M2 |=“α κ< 1”.�  

Proposition 2.17: Let α ∈ A , X U∈ α  and f X: → κ  such that ∀ ∈ν X  f ( )ν ν< 0 . 

Then there's ξ κ<  and X Y U⊇ ∈ α  such that ∀ ∈ν Y  f ( )ν ξ= . 

Proof: We get that j f1( )( )α κ< . Let ξ α= j f1( )( ). As ξ κ<  we have ξ αξ= j c1( )( )  

(where cξ is a constant function with value ξ ). So j f j c1 1( )( ) ( )( )α αξ= .�  

The following claim is a typical usage of the previous one. Several variations of it are 

used later. 

Claim 2.18: Let α ∈ A , X U∈ α  and F X: ( , ) , )→ ×Col C(µ κ µ κ  such that ∀ ∈ν X  

F ( )ν ∈ Col( , )µ ν0 × C(µ ν, )0 . Then there's f ∈ ×Col C(( , ) , )µ κ µ κ  and X Y U⊇ ∈ α  

such that ∀ ∈ν Y  F f( )ν = . 

Proof: Take enumeration fξ ξ κ<  of Col C(( , ) , )µ κ µ κ×  satisfying ξ ν< 0 ⇔  fξ ∈ 

Col( , )µ ν0 ×  C(µ ν, )0 . Defining now f ( )ζ ξ=  ⇔  F f( )ζ ξ=  yields a function on 

which the previous proposition works, giving X Y U⊇ ∈ α  and ξ  such that ∀ ∈ζ Y  

f ( )ζ ξ=  and so ∀ ∈ζ Y  F f( )ζ ξ= .�  

3. PREPARATION FORCING 

We start from a universe V  satisfying GCH which has an extender 

E = ∈ + <{ | [ ] }E aa
mκ ω  (1 < <m ω) which catches V  up to V mκ+ . That is we have 

j V V M V m0 1 1, : ( , )→ ≅ ⊇ +Ult E κ  (i.e. κ  is a κ +m -strong cardinal). 

Occasionally we'll write jk  when we mean j k0,  in the sequel. 

Our assumptions are enough for invoking 2.11 so we drive the nice system U  

from the extender E . 
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We'll iterate j0 1,  and have V M Mj j0 1 1 2

1 2
, , →  →  and set j j j0 2 1 2 0 1, , ,= o , 

κ κn nj= ( ) . 

 

κ
κ +
κ+2
κ +3

κ 4+

1 κ +4

2

V M M1 2

κ
κ +
κ +2
κ +3

κ
κ +
κ +2
κ +3

κ
κ +
κ +2
κ +3

1

1

1

1

κ
κ +
κ +2
κ +3

1

1

1

1

κ

κ
κ +
κ +2

+3

2

2

2

2

j

j

0,1

1,2

κ +4

κ+5
1 κ +5

2κ +5

κ+6
1 κ +6

2κ +6

κ1 κ2κ +ω +ω +ω

 

   Cardinal Structure for m = 3 

Using U  we define l M M: 1 2→  as l j f j f j( ( )( )) ( )( ( ))1 2 1α α= . Note that l j M= 1 1| . 

(That's because for any x M∈ 1 x j f= 1( )( )α  hence by elementarity 

M1|= “ j x j j f j1 1 2 1 1( ) ( ( ))( ( )),= α ”, that is j x j f j l x1 2 1( ) ( )( ( )) ( )= =α .) 

 

V M

N

1

i
k

j0,1
M

2l

1,2j

M
1

N

j0,1
N

1,2
j N M

2
N

 

i V N V U

k f j fU

: ( , )

([ ] ) ( )( )

→ ≅

=

Ult κ

κ
κ1
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M N
1  is the model generated in N  using the extender i E( ). The other models and 

elementary embeddings with the N  superscript are created analogously. We set 

κ κ1 0 1
N Nj i= , ( ( )) . 

Set the following: 
 P n

m n
M

n

m n
M0 1 12 1

= < = <+

< <

+

< <
∏ ∏( ( , )) ( ( , ))Col Colκ κ κ κ

ω ω
 

 P n

m n
M

n
M

m n
M1 1 12 2 1

= =+ +

< <

+ +

< <
∏ ∏( ( , )) ( ( , ( ) ))C Cκ κ κ κω

ω

ω

ω
 

 P m
M

m
M M2 1 12 2 1

= =+ + + +( ( , )) ( ( , ( ) ))C Cκ κ κ κω ω  

 P m
M

m
M M3

1
1

1
12 2 1

= =+ − + + − +( ( , )) ( ( , ( ) ))( ) ( )C Cκ κ κ κω ω  

 �  �  �  

 Pm M M M= =++ + ++ +( ( , )) ( ( , ( ) ))C Cκ κ κ κω ω
1 12 2 1

 

 Pm M M M+
+ + + += =1 1 12 2 1

( ( , )) ( ( , ( ) ))C Cκ κ κ κω ω  
 Q

n
M

n
M= =+

≤ <

+

≤ <
∏ ∏( ( , )) ( ( , ))Col Colκ κ κ κ

ω ω
1 1

1
1 1

1
2 1

 

(The equalities above hold since M1|= “ M M2 2
1κ ⊆ ”.) 

 R l Pn

m n
M

n

m n
M0 1 2 1 2 03 2

= < = < =+

< <

+

< <
∏ ∏( ( , )) ( ( , )) ( )Col Colκ κ κ κ

ω ω
 

 R l Pn

m n
M

n
M

m n
M1 1 2 1 2 13 3 2

= = =+ +

< <

+ +

< <
∏ ∏( ( , )) ( ( , ( ) )) ( )C Cκ κ κ κω

ω

ω

ω
 

 R l Pm
M

m
M M2 1 2 1 2 23 3 2

= = =+ + + +( ( , )) ( ( ,( ) )) ( )C Cκ κ κ κω ω  

 R l Pm
M

m
M M3 1

1
2 1

1
2 33 3 2

= = =+ − + + − +( ( , )) ( ( , ( ) )) ( )( ) ( )C Cκ κ κ κω ω  

 �  �  �  

 R l Pm M M M m= = =++ + ++ +( ( , )) ( ( , ( ) )) ( )C Cκ κ κ κω ω
1 2 1 23 3 2

 

 R l Pm M M M M M m+
+ + + + + +

+= = = =1 1 2 1 2 1 2 13 3 2 3 1
( ( , )) ( ( , ( ) )) ( ( , ( ) )) ( )C C Cκ κ κ κ κ κω ω ω  

We want to extend V  so we would have a 1010 ++ ×××××× mm RRQPP �� -

generic filter over M2 . We would force with the following in order to get this filter: 
 P n

n m

m

m n
1

1

= ×+ +

≤ ≤

+ +

< <
∏ ∏C C( , ) ( , )κ κ κ κ

ω
 

 P m
M2 1 2

= + +C( ,( ) )κ κ ω ≅ + +C( , )κ κm m  

 P m
M3

1
1 2

= + − +C( ,( ) )( )κ κ ω ≅ + − +C( , )( )κ κm m1  

 �  � �  

 Pm M= ++ +C( ,( ) )κ κ ω
1 2

≅ ++ +C( , )κ κ m  
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 Pm M+
+ +=1 1 2

C( ,( ) )κ κ ω ≅ + +C( , )κ κ m  

 Qn = + +C( , )κ κ  

∏
<≤

+ ××××=×
ωn

nm QPPPQP
1

112 �  (We hope the rather strange indexing we chose 

will be clear from the proof). Let ∏
<≤

++ ×××××=×
ωn

nmm JIIIIJI
1

2112 �  be P Q× -

generic over V . 

Lemma 3.1: A λ -closed separative forcing notion of size λ  is isomorphic to C( , )λ λ . 

Proof: Essentially lemma 25.11 in [J] .� 

 

In [C] it was proved that ( ( ( ), ( ) )) ( , )C Ci i Nκ κ κ κ++ + ++≅ . The following is a slight 

generalization of it. The proof technique is the one used in [C]. 

Lemma 3.2: 1≤ <n ω  µ κ= + , N |=“µ  is cardinal”, ( ( , ( ) )) ( , )C Cµ κ κ κi n
N

n+ + +≅ . 

Proof: The proof will be done by induction on n . For n = 1 we use the previous 

lemma. Let n > 1 and assume the lemma is proved for values below n . As 

i n n( )κ κ+ +=  the set { }αακα =<=′ + )(iC n  is unbounded. Let C  be ′C  with its' 

limit points and take increasing enumeration of it C n= < +α ξ κξ . We have that 

i n

n

( ) [ , )κ α αξ ξ
ξ κ

+
+

<

=
+

1U . Consider (C( ,[ , )))µ α αξ ξ+1 N . By induction there's ′ <n n , σξ, 

P n
ξ κ κ= + + ′C( , )  such that σ µ α αξ ξ ξ ξ:(C( ,[ , )))+ ≅1 N P . Let 

Q q P q
n

= ∈ ≤
< +
∏{ | }ξ

ξ κ

κ| |supp . It is clear that Q n≅ +C( +κ κ, ) . So by proving now that 

σ µ κ:( ( , ( ) ))C i Qn
N

+ →  defined by σ σ α α µ ξ κξ ξ ξ( ) ( |[ , ) ) |p p n= � × < �+
+

1  is 

isomorphism we finish the lemma. The non-obvious things are that the range of σ  is 

in Q and that it is onto Q. So let p i n
N∈ +( ( , ( ) ))C µ κ . In order to show that σ( )p Q∈  

we need to show that | |supp ( )σ κp ≤ . As N |=“| |p < µ” there's ξ κ< +i n( ) such that 

p p⊆ ×|α µξ  hence supp suppσ σ α µξ( ) ( | )p p⊆ × , so it's enough to prove 

| ( | )|supp σ α µ κξp × ≤  which we'll prove by induction on ξ . For ξ = 0  it's obvious. 

For the successor case we know 

  supp (p| ) supp (p| ) supp (p|[ )σ α µ σ α µ σ α α µξ ξ ξ ξ ξ+ +× = × ∪ ×1 1, ) . 
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By induction | |supp (p| )σ α µ κξ × ≤  and from definition | , ) |supp (p|[ )σ α α µ κξ ξ ξ+ × ≤1  

hence | |supp (p| )σ α µ κξ+ × ≤1 . For ξ  limit we'll split the proof. Let ξ  be limit ordinal 
with λ ξ κ= cf ≤ . Take α αξ ξ

ν λ
ν

=
<
U , so supp ( supp (σ α µ σ α µξ ξ

ν λ
ν

p p| ) | )× = ×
<
U , by 

induction and λ κ≤  we get | | )|supp (σ α µ κξp × ≤ . Now let ξ  be limit with 

λ ξ κ= >cf . Take α αξ ξ
ν λ

ν
=

<
U  such that i( )α αξ ξν ν

= . As λ κ≠  we have 

i i( ) ( )α α α αξ ξ
ν λ

ξ
ν λ

ξν ν
= = =

< <
U U . As κ αξ< cf   also i i iN( ) ( ) ( )κ α αξ ξ< = =cf cf  

cfN ( )αξ . As N |=“| | |p α µ µξ × < ” and N |=“cf α κξ > i( )” there's ′ <ξ ξ such that 

p p| |α µ α µξ ξ× ⊆ ×′  giving us supp suppσ α µ σ α µξ ξ( | ) ( | )p p× ⊆ ×′  and by 

induction we finish.� 
Lemma 3.3: There's a ρ κ κ ω

ω
1 1

1
:( ( ,( ( ) ) ))C + +

< <
∏ ≅n

M
m n

Ni PN . 

Proof: This is a corollary of 3.2, 
 ( ( ,( ( ) ) )) ( ( ,( ( ) ) ))C Cκ κ κ κ

ω

ω+ +

≤ <

+ +∏ ≅n k
M

k
N

n
M Ni iN N

1 1
1

, 

∀ >k m (C C( ,( ( ) ) )) ( ( , ( ) ))κ κ κ κ+ + + +≅n k
M N

n m
Ni iN

1
, 

C( , )κ κ+ +

≤ ≤
∏ ×k

k m1

C C( , ) ( , )κ κ κ κ
ω

+ +

< <

+ +∏ ≅m

m k

m .� 

Lemma 3.4: There's a ρ κ κ
ω

2
1

:( ( ( ), ( ) ))Col i i Q
n

N
+

≤ <
∏ ≅ . 

Proof: From 3.1 we get (Col( ( ), ( ) ))i i Nκ κ + ≅  Qn.� 

Claim 3.5: V I J[ ]×  has the same cardinal structure as V  and contains a 

1010 ++ ×××××× mm PPQRR �� -generic filter 1010 ++ ××××××= mm GGJIII ��  

over M2 . Specifically, if M2 |=“ D  is dense open in ××× +10 mPP �  

10 +××× mRRQ � ”  then there's element in )( 1010 ++ ××××××∩ mm GGJIID ��  of 

the form 

),)((),)((,),)((),)((),)(( 111211101 καακκ hjfjfjfjfj m+� �

�+ ))()((,)),()(( 112102 αα jgjjgj m�  and ))((,),)(( 1101 αα +� mgjgj � > 10 +××∈ mII � . 

Proof: P Q×  collapses no cardinals using the usual arguments for multiple Cohen 

forcings. 

We will show that we have the generic set by constructing it step by step in V I J[ ]× . 
Step 1: There's ′ ∈I V0  which is T in

m n
N= <+

< <
∏( ( , ( )))Col κ κ

ω
-generic over N . 
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Proof: Working in N : T  satisfies i( )κ -c.c. and | | ( )T i= κ . So T  has at most i( )κ  

maximal anti-chains. 

Working in V : T  is κ + -closed and the number of anti-chains we had found in N  is 

| ( )|i κ κ= + . Hence we can build a filter ′ ∈I V0  which is T -generic over N. 
Step 2: There's ′I1  which is T in

M
m n

NN= + +

< <
∏( ( ,( ( ) ) ))C κ κ ω

ω
1

-generic over N I[ ]′0 . 

Proof: Use the ρ1 from 3.3 to set ′ = �
″

�−I I1 1
1

1ρ . We'll show ′I1  is T -generic over 

N I ′0 . Take D N I∈ ′0  dense open in T . As ′ ∈I V0  we have D V∈ . So ′′ ∈ρ1D V  is 

dense open in P1 and using genericity of I1 over V  we have ′′ ∩ ≠ ∅ρ1 1D I , hence 

D I∩ ′ ≠ ∅1 . 

Step 3: Set the following: 

I k I0 0= � ′′ ′�  

I k I1 1= � ′′ ′�  

I I P2 2 2= |  

I I P3 3 3= |  

 �  

I I Pm m m= |  

I Im m+ +=1 1 (here we have P Pm m+ +=1 1) 

 

′ = � ″
�−J Jρ2

1  

J k J= � ′′ ′�  

 

G l I0 0= � ′′ � 

G l I1 1= � ′′ �  

G l I2 2= � ′′ �  

 �  

G l Im m= � ′′ �  

′ = � ′′ �+ +G i Im m1 1  
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G l I k Gm m m+ + += � ′′ � = � ′′ ′ �1 1 1  (because l j k i= =1 o ) 

 

Step 4: I I0 1×  is P P0 1× -generic over M1. 

Proof: Let D M∈ 1 be dense open in P P0 1× . Take f  such that 

D j f n= 1 1( )( , , , )κ α αK . Then 

X n= � �{ , , , |ξ ξ ξ1 K f n( , , , )ξ ξ ξ1 K  dense open in 
 Col( , )ξ κ

ω

+

< <

< ×∏ n

m n

 C( ,( ) )}ξ κ ω

ω

+ +

< <
∏ n

M
m n

1
 

is E
n< >κ α α, , ,1 K -big. Define f * ( )ξ = f n

Xn

( , , )
, ,

ξ ξ ξ
ξ ξ ξ

1
1

K
K
I

� �∈

 and note that 

j f j f n1 1 1( )( ) ( )( , , , )* κ κ α α⊆ K . For each ξ  the forcing Col( , )ξ κ
ω

+

< <

< ×∏ n

m n

 

C( ,( ) )ξ κ ω

ω

+ +

< <
∏ n

M
m n

1
 is ξ+ +m 1-closed and ξ ξ ξ ξ< < < < +

1 L n
m so { | ( )*ξ ξf  dense open 

in Col C( , ) ( ,( ) )}ξ κ ξ κ
ω

ω

ω
κ

+

< <

+ +

< <
< >< × ∈∏ ∏n

m n

n
M

m n

E
1

 meaning i f N( )( )* κ ∈  is dense 

open in ( ( , ( ))Col κ κ
ω

+

< <

< ×∏ n

m n

i C( ,( ( ) ) ))κ κ ω+ +

< <
∏ n

M
m n w

Ni N
1

 so from genericity of 

′ × ′I I0 1  over N  we get that i f I I( )( ) ( )* κ ∩ ′ × ′ ≠ ∅0 1  yielding 

j f I I1 0 1( )( ) ( )* κ ∩ × ≠ ∅ . 

Step 5: I2  is P2 -generic over M I I1 0 1[ ]× . 

Proof: Let P A M I I2 1 0 1⊇ ∈ ×[ ] such that M I I1 0 1[ ]|× =“ A is maximal anti-chain”. As 

M1|= “ P P0 1×  is κ + +m 1-closed” we have that A M∈ 1 . Take enumeration 

A a m= < +{ | }ξ ξ κ  and set B a m= < +{ | }dom ξ ξ κU . Take ϕ κ: B V m× ↔ +2  ϕ ∈ M1. 

We'll show that A is also a maximal anti chain in C m m( , )κ κ+ + . (That is in V !). 

Suppose there's p C m m∈ + +( , )κ κ  such that ∀ ∈ ⊥a A p a . Then from the definition of 

B  we have that ∀ ∈ ⊥a A p B a| . As | |p m< +κ  we have that ϕ κ" |p B m< +  and 

′′ ⊆ +ϕ κp B V m| . We know that M V m
V m

1
1⊇ +

+ −
κ

κ ( )  and so p B m
M M| ( ( , ( ) ))∈ + +C κ κ ω

1 2 1
. So 

there's a A∈  such that p B a| || . Contradiction. So A I∩ ≠ ∅2  and obviously 

A I∩ ≠ ∅2 . 

Step 6: ∀ ≤ ≤ +3 1k m  I k  is Pk -generic over ][ 1101 −××× kIIIM � . 

Proof: This is exactly as in step 6. 
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Note: Thus far we had shown that ][10 IVII m ∈×× +�  is 10 +×× mPP � -generic over 

M1. 

Step 7: mGG ××�0  is mRR ××�0 -generic over M2 . 

Note: We don't handle here the generic over Rm+1  due to Q. Later, we'll tackle 

R Qm+ ×1  together. 

Proof: Let D M∈ 2 be dense open in R Rm0 × ×L . Take f  such that 

D j f j= 2 1( )( , ( ))α α . Let  

X = < >{ , |ν ν0 1

f n

m n

n
M

m n

( , ) ( , ) ( ,( ) )ν ν ν κ ν κ
ω

ω

ω
0 1 1

0
1
0

1
 dense open in Col C+

< <

+ +

< <

< × ×∏ ∏  

)})(,(C))(,(C))(,(C
111

0
1

10
1

0
1 MM

m
M

m ωωω κνκνκν ++++−+++ ××× �

 
then X U∈ α

2 . Recalling that { , | }� � < ∈ν ν ν ν α0 1 0 1
0 2U  we set �

0
10

10 ,
101

* ),()(

νν
νν

ννν
<

∈��

=
X

ff  

and we note that j f j j f j2 1 2 1( )( ( )) ( )( , ( ))* α α α⊆ . Thanks to ν1
0 + -closure we have 

  
{ |� �ν1 f

n

m n

n

M
m n

* ( ) ( , ) ( , ( ) )ν ν κ ν κ
ω

ω

ω
1 1

0
1
0

1
 dense open in Col C

+

< <

+ +

< <
∏ ∏× × 

C C C( ,( ) ) ( ,( ) ) ( ,( ) )ν κ ν κ ν κω ω ω
1
0

1
0 1

1
0

1 1 1

+ + + − + ++ +× × ×m
M

m
M MK ∈Uα  

 hence j f M1 1( )( )* α ∈  is dense open in P Pm0 × ×L  so from genericity of I Im0 × ×L  

over M1 we get that  j f I Im1 0( )( ) ( )* α ∩ × × ≠ ∅L  yielding 

j f j G Gm2 1 0( )( ( )) ( )* α ∩ × × ≠ ∅L . 

Step 8: ′ +Gm 1 is T i N
M NN= + +( ( ( ) ,( ) ))C κ κ ω

1
2

-generic over N . Moreover, if D N∈  is 

dense open in T  then there's p Im∈ +1 such that l p Gm( ) ∈ +1 and i p D Gm( ) ∈ ∩ ′ +1. 

Proof: Let D N∈  be dense open in T . Take D i f= ( )( )κ . Hence 
X f UM= ∈+ +{ | ( ) ( ,( ) )}ξ ξ κ κ ω

κ dense open in C 1 2
. Set �

X

ff
∈

=
ξ

ξ )(* . Note that 

i f D( )* ⊆  and due to κ + -closeness f * is dense open in C( ,( ) )κ κ ω+ +
1 2M . From 

genericity of Im+1 over V we have p f Im∈ ∩ +
*

1 hence i p i f Gm( ) ( )*∈ ∩ ′ +1. Trivially 
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p Im∈ +1. j p k i p k G Gm m1 1 1( ) ( ( ))= ∈ ′′ ′ ⊆+ + . As p M∈ 1 and j M l1 1| =  we get that 

l p Gm( ) ∈ +1. 
Step 9: ′J  is T i i

n
N= +

≤ <
∏( ( ( ), ( ) ))Col κ κ

ω1

 -generic over V Im[ ]+1  (and thus 

over N Gm[ ]′ +1 ). 

Proof: Let D V Im∈ +[ ]1  be dense open in T . Then ′′ ∈ +ρ2 1D V Im[ ] is dense open in Q  

and as J  is Q -generic over V Im[ ]+1  we get that ′′ ∩ ≠ ∅ρ2 D J  hence D J∩ ′ ≠ ∅ . 

Step 10: G Jm+ ×1  is R Qm+ ×1 -generic over M1. 

Proof: Let M1|= “ D  dense open in R Qm+ ×1 ” and ),,,)(( 11 nfjD αακ �= . So 

X = { |,,, 1 �� nξξξ �  

f n( , , , )ξ ξ ξ1 K  dense open in ��
<≤

+++ ∈× ∏ n
E

n
M αακ

ω

ω κκκκ
�,,

1
1 12

}),(Col))(,(C . 

 Set f * ( )ξ = �
�

�
X

n
n

f
∈�� ξξξ

ξξξ
,,,

1
1

),,,(  and due to κ-closeness we have { | ( )*ξ ξf  dense 

open in C Col( ,( ) ) ( , )}κ κ κ κω

ω

+ + +

≤ <

× ∏1
1

2M
n

∈ � �E κ ,  so j f1( )( )* κ ⊆  ),,,)(( 11 nfj αακ �  

and i f( )( )* κ  is dense open in (C( ( ) ,( ) )i N
M Nκ κ ω+ + ×1

2
Col( ( ), ( ) ))i i

n
Nκ κ

ω

+

≤ <
∏

1

. Hence 

there's p Im∈ +1 such that l p Gm( ) ∈ +1 and � ′� ∈ ∩ ′ × ′+i p h i f G Jm( ), ( )( ) ( )* κ 1  which 

yields  )(),,,)(()(),( 1111 JGfjhkpj mn ×∩∈�′� +αακ � . Note that as p M∈ 1 we have 

p j g= 1( )( )α  hence j p l p j g j1 2 1( ) ( ) ( )( ( ))= = α . 

Step 11: G Jm+ ×1  is R Qm+ ×1 -generic over ][ 02 mGGM ××� . 

Proof: Let M G Gm2 0[ ]|× × =L “ A R Qm⊆ ×+1  is a maximal anti-chain”. As 

M2 |=“ R Qm+ ×1  is κ1
++ -c.c.” and M2 |= “ mRR ××�0  is κ1

++ -closed” we have that 

A M∈ 2 . Trivially A M∈ 1 and from genericity over M1 we get A G Jm∩ × ≠ ∅+( )1 .  

Step 12: 10 +×× mII �  is 10 +×× mPP � -generic over M2 . 

Proof: Let M2 |= “ D  is dense open in P Pm0 1× × +K ”. Trivially M1|= “ D  is dense open 

in 10 +×× mPP � ” hence ∅≠××∩ + )( 10 mIID � . 

Step 13: 10 +×× mII �  is 10 +×× mPP � -generic over ][ 102 JGGM m ××× +� . 

Proof: Let =××× + |][ 102 JGGM m� “ A P Pm⊆ × × +0 1K  is a maximal anti-chain”. As 

M2 |=“ QRR m ××× +10 �  is κ1-closed” we have that A M∈ 2  and from the previous 

step we get ∅≠××∩ + )( 10 mIIA � . 
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Step 14: 1010 ++ ×××××× mm GGJII ��  is 1010 ++ ×××××× mm RRQPP �� -

generic over M 2 . 

Proof: That's just a rewording of the previous step. 

By this we proved the claim.� 

Set P Q j P Qn n
n

( ) ( ) ( )× = ×  and I J j I j Jn n
n n

( ) ( )× = � ′′ � × � ′′ � . 

The forcing notion P Q×  is κ + -closed and j1 is an elementary embedding derived 

from the extender E = ∈ + <{ | [ ] }E aa
mκ ω  hence we can extend j1 to j1

* with domain 

V I J[ ]×  and j1
* will be also derived from an extender E = ∈ + <{ | [ ] }E aa

mκ ω . Thus 

we lift V M M
j j

→ →
0 1 1 2

1 2

, ,

 to V I J
j

[ ]
,

*

× →
0 1

 M I J M I J
j

1
1 1

2
2 2

1 2

[ ] [ ]( ) ( ) ( ) ( )
,

*

× → × . Set 

M M I J2 2
2 2* ( ) ( )[ ]= × . The forcing notions 10 ,, +mPP � , Q, R0 ,...,Rm+1   were defined in 

M2 . Substituting M2
* for M2  in those definitions will leave us with the same sets 

because M2 |=“ P Q( ) ( )2 2×  is κ 2
+ -closed”. 

Claim 3.6: 1010 ++ ×××××× mm GGJII ��  is 1010 ++ ×××××× mm RRQPP �� -

generic over M2
*. 

Proof: Let M2
* |=“ 1010 ++ ××××××⊆ mm RRQPPA ��  is a maximal anti-chain”. As 

M2 |=“ P Q( ) ( )2 2×  is κ 2
+ -closed” we get that A M∈ 2  and so 

A I I J G Gm m∩ × × × × × × ≠ ∅+ +( )0 1 0 1K K  by genericity over M2 .� 

Let use define 
V V I J Vn

n

1

1

= =
≤ <
∏[ ][ ] *

ω
 

V V I Jn
n

2

2

=
≤ <
∏[ ][ ]

ω
 

V V I Jk
n

k n

=
≤ <
∏[ ][ ]

ω
 for 2 ≤ <k ω . 

Note that we got from the construction that if D Vn∈ +1 is dense in (Col( ( ), ( ) ))i i Nκ κ +  

then there's i f D Jn( )( )κ ∈ ∩ ′  such that j f Jn( )( )κ ∈ . 

 

Corollary 3.7: 

It is consistent that there's V * with the following power-set function 
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�
�

�
�

�

≤

<<
≤

=
++

++

+

λκλ
κλκκ

κλλ
λ

m

mm2  

which contains an elementary embedding j V M1 1
* * *: → , crit( )*j1 = κ  derived from an 

extender E = ∈ + <{ | [ ] }E aa
mκ ω  and ( ) *κ κ+ +=m

M
m

1
. Moreover iterating j1

* we have 

V M M
j j

* * *
,

*
,

*

→ →
0 1 1 2

1 2  and there's a filter *
1010 VGGJII mm ∈×××××× ++ ��  which is 

1010 ++ ×××××× mm RRQPP �� -generic over M2
*. 

4. THE FORCING 

The forcing notion we're presenting here is essentially the Gitik-Magidor forcing 

[G-Ma] with added Cohen forcings. As the exact definition contains lots of details 

we'll describe it here from scratch in a somewhat non technical way. 

Our starting point is Prikry forcing. We will extend it in two directions 

independently and then we'll merge both extensions into one humongous forcing. 

We're starting from a measurable cardinal κ   and conditions of the form t T,  

where T  is a tree of possible continuations of t  with splittings in some ultrafilter. As 

is well known the trees in the conditions don't affect the conditions' compatibility. 

Taking the sequences in the generic object give us a cofinal sequence � < �τ ωn n|  into 

κ . We'd like to modify this forcing so that κ  will become ℵω  of the generic extension. 

If the τn  will become ℵn and κ  won't be collapsed then  it'll be ℵω . So we'll add Levy 

collapses to the conditions. (i.e. a typical condition will look like �� � � � �τ τ0 1 0 1, , , ,f f T  

where f0 0 1∈ <Col( , )τ τ , f1 1∈ <Col( , )τ κ ). The trees in the original Prikry forcing 

allowed us to prove that any statement in the forcing language can be decided by a 

condition with arbitrarily chosen sequence length. (Henceforth we will call this Prikry 

condition). The Prikry condition is essential in order to control the behavior of the 

power-set function below κ . In order to have this condition we need some analog of 

the trees for the functions. For this we'll add F  to the condition which is a function 

with domain T  such that ),(Col),,( 1 κννν <∈�� nnF � . This idea goes back to 
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Magidor's paper [Ma1]. So our typical condition will look like �� � � � �τ τ0 1 0 1, , , , ,f f T F  

with �� � � � �τ τ τ0 1 2 0 1 2, , , , , , ,g g g S G ≤  �� � � � �τ τ0 1 0 1, , , , ,f f T F  if we also add the 

requirements that g F2 2≤ � �( )τ  and that ),,,(),,( 121 ��≤�� nn FG νντνν ��  for each 

�� 21 , νν �  in S . This is not enough. We want that this F  won't affect the conditions' 

compatibility. (Remember, the F  is analogous to T ). In order to get this we will 

restrict the allowed F . The idea of restricting such a function to values in a filter is 

due to H. Woodin [C-Wo]. We'll define ),,,F(=)( 1,,1
���� νννννν nn

F �
�

. Let i V N1 1: →  

witness the measurability of κ . We iterate the embedding to get i N N1 2 1 2, : →  and we 

define i i i2 1 2 1= , o . If we could have a filter, I , which is (Col( , ( )))κ κ< i N1 1
-generic 

over N1 then we would have required IFi
n

∈�� ))(( ,,1 1
κνν �

. Alas, we have no such 

filter. However, we do have a filter, I , which is (Col( , ( )))κ κ+ < i N1 1
-generic over N1. 

In order to be able to add the requirement IFi
n

∈�� ))(( ,,1 1
κνν �

 we should change the 

definition of F  and hence also the definition of f . So in the typical condition 

�� � � � �τ τ0 1 0 1, , , , ,f f T F  we have f0 0 1∈ <+Col( , )τ τ , f1 1∈ <+Col( , )τ κ  with the obvious 

change in F 's definition. The cardinal structure in the generic extension will now be: 

ℵ =0 0τ , ℵ = +
1 0τ , ℵ =2 1τ , ℵ = +

3 1τ ... etc. and still if κ  won't collapse it'll be ℵω . We 

note here that in fact,  for every 1 ≤ <m ω  we have a filter which is 

(Col( , ( )))κ κ+ <m
Ni1 1

-generic over N1 and after the appropriate changes to the f 's and 

F 's we could use this filter. Our next step is to monkey with 2ℵn  of the generic 

extension. Our first aim will be to have ∀ <n ω  2 3
ℵ

+=ℵn
n . Clearly what's needed to 

be done is to add to our forcing condition Cohen functions and a function whose 

domain is the tree. That is, a typical condition will look something like 

�� � � � � � �τ τ0 1 0 1 00 01 10 11
0 1, , , , , , , , , , ,f f g g g g T F G G . 

 As our cardinal structure will be � �+ +τ τ τ τ0 0 1 1, , , ,K  our g 's should be g00 0 1∈ +C( , )τ τ , 

g01 0∈ +C( , )τ κ , g10 1∈ +C( , )τ κ , g11 1∈ + ++C( , )τ κ . These last 2 functions look a bit 

weird and generate some technical problems, mainly, it's not clear how to extend such 

functions when the Prikry sequence is enlarged.. In order to overcome these problems 
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we will change them to g10
* , g11

* . These 2 functions have as their domain the 1st level 

of T  and for each � �∈ν T  we require g10
* ( ) , )ν τ ν∈ +C( 1 , g11

* ( ) , )ν τ ν∈ ++C( 1
+ . (The 

observant reader will see that i g1 10( )( )* κ , i g1 11( )( )* κ  are the g10, g11). Defining now for 

0 1≤ ≤l  ),,,(),( 10110,1
��=�� µµννµµνν n

ll GG
n

�
�

 the compatibility requirement will 

be i G i Jl l
2 1( )( , ( ))κ κ ∈  where J J1 2×  is ( ( , ) ( , ))C C Nκ κ κ κ1 1 2

+ + ++× -generic over N2. 

Once again this generic doesn't exist. The solution to this problem is to make a 

preparation forcing which will 'bring in' the needed generics. After this preparation 

forcing we loose GCH above κ  but we still have the elementary embeddings. As we 

couldn't get the generic for (C( , ))κ κ1 2

+
N  without loosing also the elementary 

embeddings (that is the measurability of κ) we won't have this generic. This leaves us 

with the inability to control 2τn . It was pointed out by Woodin that τn
+  can be 

collapsed to τn  using (Col( ( ), ( ) )i i Nκ κ +
2
 for which we have a generic filter. So we 

will control the power set size of � �+ +τ τ0 1, ,K  and then we'll collapse all the τn
+  to τn . 

So the cardinal structure will be � �τ τ0 1, ,K . Unfortunately we don't have enough 

cardinals left after τ1 in order to describe the power set of τ0
+ . We solve this problem 

by redefining the f 's as � � ∈ < × <+ +f f0 1 0
3

1 1
3, ( , ) ( , )Col Colτ τ τ κ . Now the cardinal 

structure will be � �++ + ++ +τ τ τ τ τ τ0 0 0
3

1 1 1
3, , , , , ,K  and our typical forcing condition looks 

like �� � � � � � �τ τ0 1 0 1 01 02 03 11 12 13
1 2 3, , , , , , , , , , , , , ,* * *f f g g g g g g T F G G G  where 

g01 0 1∈ +C( , )τ τ , g02 0 1∈ ++ ++C( , )τ τ , g03 0
3

1
3∈ + +C( , )τ τ , g11 1

* ( ) ( , )ν τ ν∈ +C , 

g12 1
* ( ) ( , )ν τ ν∈ ++ ++C , g13 1

3 3* ( ) ( , )ν τ ν∈ + +C . We now give the final touch which will 

collapse the τn
+ . The forcing condition will look like 

�� � � � � � � � �τ τ0 1 0 1 01 02 03 11 12 13 0 1
1 2 3, , , , , , , , , , , , , , , ,* * * *f f g g g g g g h h T F G G G H  where 

h0 1 1∈ +Col( , )τ τ , h1
* ( ) ( , )ν ν ν∈ +Col  and i H i J

n2 11
( )( , ( )),� � ∈ν ν κ κK  where J  is 

(Col( ( ), ( ) ))i i N1 1 2
κ κ +  -generic over N2 . We will now put the g 's into the f 's and 

change a bit the way a condition looks in order to simplify the notation. So a condition 

will look like �� � � � � � �τ τ0 1 0 0, , , , , , , ,* *f f h h T F H  where 

f0 0
3

1 0 1∈ < × ×+ +Col C( , ) ( , )τ τ τ τ C( , )τ τ0 1
++ ++ × C( , )τ τ0

3
1

3+ + , 
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f * ( ) ( , ) ( , )ν τ ν τ ν∈ < × ×+ +Col C1
3

1 C( , )τ ν1
++ ++ × C( , )τ ν1

3 3+ + , h0 1 1∈ +Col( , )τ τ , 

h* ( ) ( , )ν ν ν∈ +Col  and i F i It2 1( )( , ( ))κ κ ∈ , i H i Jt2 1( )( , ( ))κ κ ∈ ,  where I  is a 

( ( , ( ))Col κ κ+ < ×3
1i C( , ( ))κ κ+ ×i1 C( , ( ) )κ κ++ ++ ×i1  C( , ( ) ))κ κ+ +3

1
3

2
i N -generic filter 

over N2 and J  is a ( ( ( ), ( ) ))Col i i N1 1 2
κ κ + -generic over N2 . 

The above treatment will work as long as the wanted power set function have a 

bounded jump. That is there's a k < ω  such that 2ℵ
+≤ℵn

n k . In this case we choose 

Levy collapse which leave enough cardinals allowing us to describe the power 

function on the cardinals following τn  using at most the cardinals following τn+1. If 

we want to lift this restriction we'll have also change the Levy collapses dynamically. 

As each 'chunk' might have a different length we can't use a fixed number of Cohen 

functions in a condition. We'll use F n( )  to specify a specific function from the product 

forcing. Let's take as an example the case 2 0
1

ℵ =ℵ  and ∀ > =ℵℵ
+n n

n n1 2 . We'll 

describe typical conditions to generate this case. The cardinal structure we suggest is 
τ0

0ℵ
 
τ0

+

 
τ0

1

++

ℵ
  

τ1

2ℵ
 
τ1

+

 
τ1

3

++

ℵ
   

τ2

4ℵ
 
τ2

+

 
τ2

5

++

ℵ
 
τ2

3

6

+

ℵ
   

τ3

7ℵ
 
τ3

+

 
τ3

8

++

ℵ
 
τ3

3

9

+

ℵ
 
τ3

4

10

+

ℵ
 
τ3

5

11

+

ℵ
 
τ3

6

12

+

ℵ

K
K  

and a condition will look like �� � � � � � �τ τ0 1 0 0, , , , , , , ,* *f f h h T F H  where 

 f0 0 1 0 0 0 1∈ < × ×++ + ++ ++Col C C( , ) ( , ) ( , )τ τ τ τ τ τ  

 f * ( ) ( , ) ( , ) ( , )ν τ ν τ ν τ ν∈ < × ×++ + ++ +Col C C1 1 1
3  

 h0 1 1∈ +Col( , )τ τ  

 h* ( ) ( , )ν ν ν∈ +Col  

 F ( , ) ( , ) ( , ) ( , ) ( , )� � ∈ < × × ×+ + ++ ++ + + +ν ν ν ν ν ν ν ν ν ν0 1 0
3

1 0 1 0 1
4

0
3

1
6Col C C C

 F ( , , ) ( , )� � ∈ < ×+ν ν ν ν ν0 1 2 1
6

2Col K  

 

i F i i i i i N2 1
3

1
4 3 6

2
( )( , ( )) ( ( , ( )) ( , ( ) ) ( , ( ) ) ( , ( ) ))��

+ + ++ ++ + + +∈ < × × ×κ κ κ κ κ κ κ κ κ κCol C C C

 

 H( , ) ( , )� � ∈ +ν ν ν ν0 1 1 1Col  ... 

 i H j i i N2 1 1 1 2
( )( , ( )) ( ( ( ), ( ) ))��

+∈κ κ κ κCol  
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We retreat now to the original Prikry forcing. Our aim is to enlarge 2κ  without 

'loosing control' below κ . Using Prikry forcing we can add an unbounded subset to κ . 

An obvious suggestion would be to iterate this forcing enough times. Unfortunately 

we are loosing control on what happens this way. (i.e. along with the Prikry sequences 

also the relations between them are added and these are new ω-sequences). In order to 

solve this we will add all the Prikry sequences in one step and we'll make sure that the 

relations between these new sequences are in the ground model. Our assumption is 

that we have a big enough set A equipped with a directed partial ordering having a 

minimal element 0 and for each α β, ∈ A such that α β>  we have a projection πα β, . 

For s ⊂ A a typical condition will look like { , | }� � ∈α ααt s . By taking only s  with 

s ≤ κ  we can demand that each such s  have a maximal element. And a typical 

condition will look like { , | {max }}� � ∈ − ∪α ααt s s  { max , , }max� �s t Ts . The point in 

this forcing is that the Prikry sequences aren't enlarged independently. When t smax  is 

enlarged all the t α  are enlarged by the projection π αmax ,s  of the enlargement. Imposing 

enough restrictions on the projections guarantee that these sequences will be different 

from each other which will blow 2κ  to A . As the projections are already in the 

ground model we won't get new sets for the relations between the different sequences. 

The other parts of the definition of the partial order for this forcing are quite natural. 

(i.e. a stronger condition is one with larger support, sub-tree module the projection 

etc.). In order to build such an A of size κ+m  we had to assume that κ  is a κ +m -strong 

cardinal. Let j V M1 1: →  witness the κ+m -strongness of κ . We'll iterate it and have 

j M M1 2 1 2, : → , j j j2 1 2 1= , o . 

We will now combine together these 2 extension. For this we'll also require that  we 

take only s ⊂ A with 0 ∈s . We will put the Levy and Cohen functions on the 0th 

coordinate. The function with the tree as domain will be carried on the maximal 

coordinate. So a typical condition will look like 

{ , , , , , , ,* *� � � � � � ��0 0 1 0 0τ τ f f h h � � ∪max , , , , }maxs t T F Hs { , | { ,max }}� � ∈ −α ααt s s0 . 
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As the tree T  is being built on a different ultra-filter each time the compatibility 

requirement will use max s to restrict the functions into the proper generic. (i.e. 

j F s j s2 1( )(max , (max ))�� ∈ ( ( , ( )))Col κ κ+ <3
1 2
j M ). Note that the generics we use here 

are over M2  and the forcing we had done in the previous section give us all the 

generics we might need.. 

This forcing will blow 2κ  to A , convert κ  to ℵω  and set the value of 2ℵn  to the 

prescribed values in one step. 

 

And now we'll look into the gory details. 

 

The universe we're working is the one constructed in the previous section. That is 

we have j V M1 1: → , crit( )j = κ , ( )k m
M

m+ +=
1

κ . The power set function in V  is 

�
�

�
�

�

≤

<<
≤

=
++

+

+

λκλ
κλκκ

κλλ
λ

m

mm2  

 and j1 is derived from the extender E = ∈ + <{ | [ ] }E aa
mκ ω . We'll derive the nice 

system U A A= �� ∈ � � ∈ ≥ ��Ua | , | ,,α π α β β αβ α  from E. Iterating j1 we have 

V M M M
j j j

→ → →
0 1 1 2 2 3

1 2 3

, , ,

 and setting κ κ0 = ,κ κn nj= ( )  we have a filter I  which is 
( ( , )Col κ κ

ω

+

< <

< ×∏ n

m n
1 C( , )κ κ

ω

+ +

≤ ≤ <
∏ ×n n

n n

1 2

1 21

 

C( , )κ κ
ω
ω

+ +

≤ <
≤ <

∏ ×n n

n
n

1 2

1
2

1
1
1

Col( , )κ κ
ω

1 2
+

< <

< ×∏ n

m n

C( , )κ κ
ω

1 1
1

1 2

1 2

+ +

≤ ≤ <
∏ ×n n

n n

C( ,( ) )κ κ
ω
ω

1 2
1
1

1 2

3

1
2

+ +

≤ <
≤ <

∏ ×n n
M

n
n

 Col( , ))κ κ
ω

1 1
1

2

+

≤ <
∏

n
M  

-generic over M2 . 

We are given a monotonic function a:ω ω→  and our aim is to build a generic 

extension in which 2ℵ =ℵn
a n( )  and 2ℵ

+=ℵω
ω m. We derive functions b c c, , :1 2 ω ω→  

d e, :ω ω ω× →  from a  by induction: 

 

 b m( )0 1= +       c1 0 0( ) =  
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        c m2 0( ) =  

 
�
�
�

>−−
≤−+

=+
mncncancnca

mncncam
nb

)())(()())((
)())((1

)1(  
c n c n

c n c n b n
1 2

2 2

1 1
1 1

( ) ( )
( ) ( ) ( )

+ = +
+ = + +

 

 

 
�
�

�
�

�

+>−+++−−+
+=−+
+<−++−−+

=
)1()1)((1)1()1)((

)1()1)((0

)1()1)((1)()1)((

),(

111

1

111

nckndbndkndb

nckndb

nckndbndkndb

knd  

 
�
�

�
�

�

+>−+
+=−+
+<−+

=
)1()1)((1

)1()1)((1

)1()1)((0

),(

1

1

1

nckndb

nckndb

nckndb

kne  

While the domain of d e,  isn't ω ω×  we will use their values only where we defined 

them. 

These functions describe the behavior of the 'chunks' we don't collapse in the normal 

Prikry sequence. We set In  to be a 
([Col C Col( , ) ( , )] ( , ))( )

( , )
( , )

( )

κ κ κ κ κ κ+ + +

≤ ≤

+< × ×∏b n i
e n i

d n i

i b n
M1

1
1 1 2

-generic filter over M2 , Kn  

to be 
([Col C Col( , ) ( , )] ( , )( )

( , )
( , )

( )

κ κ κ κ κ κ+ + +

≤ ≤

+< × × ×∏b n i
e n i

d n i

i b n
1

1
1 1

[Col C( , ) ( , ( ) )])( )
( , )
( , )

( )

κ κ κ κ1 2 1 1
1

3 2

+ +
+

+

≤ ≤

< × ∏b n i
e n i

d n i
M

i b n
M - 

generic over M2 . 

Recall that we have the sequence V V V V n= ⊃ ⊃ ⊃ ⊃1 2 K K  and let  ′Jn  be 

(Col( ( ), ( ) ))i i Nκ κ + -generic over V n+1. Note that we choose the generic such that if 

D V n∈ +1 is dense in (Col( ( ), ( ) ))i i Nκ κ +  then i f D Jn( )( )κ ∈ ∩ ′ and j f( )( )κ  is in the 

projection of In  to (Col( , ))κ κ1 1 2

+
M . 

o  

Example 4.1: m = 3, a n n n( ) = +  

 
τ τ τ τ τ0 0 0

2
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3
0

4 0

0 0 1 2 3 01 2
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( ) ( )
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The d e,  describe what Cohen functions we should add namely 1≤ ≤k b n( ) 

C( , )( , )
( , )τ τn

k
n e n k

d n k+
+

+ . 

Definition 4.2: Let T ⊆ <[ ]κ ω ordered by end-extension. t T∈  then 

 SucT

def

t t T( ) { | ^ }= < � �∈ν κ ν  

Definition 4.3: Let T ⊆ <[ ]κ ω ordered by end-extension. T  will be called Uα -tree if: 

 t T t nn∈ → = +Lev ( ) 1 

 t T t∈ → ∈ <0 [ ]κ ω
 

 t t T t t t tT T1 2 1 2 1 2, ( ) ( )∈ ≤ → ⊇Suc Suc  

 Lev0( )T U∈ α  

 t T t U∈ → ∈SucT ( ) α  

Definition 4.4: Let T  be a Uα -tree and t T∈ . We'll define Tt  a Uα -tree to be: 

 

Lev Suc
Suc Suc

0 ( ) ( )
( ) ( ^ )

T t

r T r t r
t T

t T Tt

=
∈ → =  

Definition 4.5: Let T  be a Uα -tree and A Ua∈ .. We'll define T A|  a Uα -tree to be: 

 Lev Lev0 0( | ) ( )T A T A= ∩  

 t T A t t AT A T∈ → = ∩| ( ) ( ) .|Suc Suc  

Definition 4.6: Let � < � <T ii | λ λ κ   be Uα -trees . We'll define Ti
i<λ
I  a Uα -tree to be: 

 ��
λλ <<

=
i

i
i

i TT )(Lev)(Lev 00  

 �� �

λλ λ <<

=→∈
< i

TT
i

i ttTt
i

i
i

)(Suc)(Suc  

Definition 4.7: Let T  be a Uα -tree. We'll define πβ α,
−1 T  a Uβ-tree to be: 

 Lev Lev0
1 1

0( ) ( ( )), ,π πβ α β α
− −=T T  

 t T t t
T T∈ → =− −

−π π πβ α π β α β αβ α, , ,
,

( ) ( ( ( )))1 1
1Suc Suc  

Definition 4.8: Let T  be a Uα -tree and F a function such that dom F T=  t T∈ , then: 

 dom F Tt t=  
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 ∀ ∈ =s T F s F t st t ( ) ( ^ )  

Definition 4.9: Let T  be a Uα -tree and F a function such that dom F T= , t T∈ , 

Ft ( , )− −  is defined by 

 dom F (-,-)t = Tt |[ ]κ 2  

 ∀� � ∈ = � �ν ν κ ν ν ν ν0 1
2

0 1 0 1, |[ ] ( , ) ( ^ , )T F F tt t  

Definition 4.10: Our forcing notion P consists of elements p of  the form 

 { , , , , , , , , , , , , max , , , , }* * max� � � � � � �� � � ∪− −0 0
0 0

0 1 0 1τ τK K Kn n n n n
sf f f h h h s p T F H  

 { , | , max }� � ∈ −γ γγp s s0  

where 

(1)     s ⊆ A, s ≤ κ , s  has maximal element and 0 ∈s . We'll write mc( )p  for max s, 

pmc  for p smax  and supp( )p  for s . 

(2) ∀ ∈γ s  pγ ωκ∈ <[ ]  is 0 -increasing. 
(3) ∀ ≤ <0 i n  f i i

b i
i i

j
i e i j

d i j

j b i

∈ < ×+
+

+
+

+

≤ ≤
∏Col C( , ) ( , )( )

( , )
( , )

( )

τ τ τ τ0
1

0 0 0

1

 

(4) ∀ ≤ <0 i n  hi i i∈ + +
+Col( , )τ τ1

0
1

0  

(5) T  is U pmc( )-tree and ∀ ∈η ηT pmc ^  is 
0

-increasing. 

(6) ∀ ∈γ s  max pmc  isn't permitted to pγ  

(7) ∀� �∈ν T  |{ | }|γ ν νγ∈ ≤s pis permitted to 0 

(8) ( ) ( , )p pmc
n

0 0
0
0 0= = � �τ τK  and | |p0 1≥ . 

(9) ∀� � ∈ ∈ < ×+ +
+
+

≤ ≤
∏ν ν τ ν τ τT fn n

b n
n

j
n e n j

d n j

j b n

* ( )
( , )

( , )

( )

( ) , ) , )0 0 0 0 0

1

Col( C(  (Assume 

τ νn+ =1
0 0 ). 

(10) ∀� �∈ ∈ +ν ν ν νT hn
* ( ) , )0 0Col( 0  

(11) ∀� �∈+ν ν0 1, ,K k T  
F k k k

b n k
k( ,..., , ) ( , )( )ν ν ν ν ν0 1

0 1
1

0
+

+ + +
+∈ < ×Col C( , )( , )

( , )

( )

ν νk
j

k e n k j
d n k j

j b n k

0
1

0 1

1 1

+
+ + +
+ + +

≤ ≤ + +
∏  

(12) ∀� �∈+ν ν0 1,K k T  H k k k( ,..., ) ( , )ν ν ν ν0
0

1
0

1
0

1
0

+ + +
+∈ Col  

(13) ∀ ∈t T  we require � � ∈ + +j F p j p j H j It t n t2 1 2 1 10( )( ( ), ( ( ))), ( )( , ( ))mc mc κ κ .�  

Definition 4.11: p q P, ∈ . We say that p q≤  ( p is stronger than q ) if 

(1) supp supp( ) ( )p q⊇  
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(2) ∀ ∈γ supp( )q  pγ is end-extension of q γ  

(3) p q Tq qmc mc( ) − ∈  

(4) ∀ ∈γ supp( )q  p q aq
γ γ

γπ− = mc( ), "  where a p qq⊆ −mc mc( )  is maximal permitted 

to q γ  

(5) T Tp
p q
q

q≤
−mc mc( )  

(6) ∀ ∈γ suppq , ∀� � ∈ν T p  such that ν  is permitted to pγ  

  π ν π π νγ γmc mc mc mc( ), ( ), ( ), ( )( ) ( )p q p q= o  

(7) ∀ ≤ <0 i nq  f fi
p

i
q≤   

(8) If n np q>  then f f p n
n

p
n
q q q

q q≤ +* ( )( ( ))mc 1  

(9) ∀ < <n i nq p  f F p q i ni
p q q q≤ − − +(( )| )( )mc mc 1  

(10) ∀ ≤ <0 i nq  h hi
p

i
q≤   

(11) If n np q>  then h h p n
n
p

n
q q

q q≤ +* ( ( ))0 1  

(12) ∀ < <n i nq p  h H p q i ni
p q q≤ − − +(( )| )0 0 1  

(13) If n np q=  then ∀ < >∈ν T p  f f
n

p
n
q

p qp q
* *

( ), ( )( ) ( )ν π ν≤ o mc mc , h h
n
p

n
q

p q
* *( ) ( )ν ν0 0≤  

(14) If n np q>  then ∀ < >∈ν T p  f F
n

p
p q
q

p qp q
*

( ), ( )( ) ( )( )ν π ν≤
−mc mc mc mco , 

h H
n
p

p q
q

p
* ( ) ( )ν ν0 0

0≤
− 0  

(15) ∀ ∈t T p F t F tp
p q
q

p qq( ) ( )( ) ( ), ( )≤
−mc mc mc mcoπ , H t H tp

p q
q( ) ( )0 0

0≤
− 0 �  

 

Claim 4.12: � ≤�P,  is a forcing notion. 

Proof: It's easy to see that ≤  is reflexive. So we're left with showing transitivity of ≤ . 

Let p q r≤ ≤ . We'll show p r≤ . 

(3) We need to show that p r Tr rmc mc( ) − ∈ : We have 

 

p r p q q r

p q q r

r r r r

q r
q r

mc mc mc mc mc mc

mc mc
mc mc mc mc

( ) ( ) ( ) ( )

( ), ( )
( ) ( )

( ) ( )

( ) ( )

− = − ∪ − =

′′ − ∪ −π  
As q r Tr rmc mc( ) − ∈  and p q T Tq q

q r
r

r
mc mc

mc mc
( )

( )− ∈ ≤
−

 we have 

 ′′ − ∪ − ∈πmc mc
mc mc mc mc

( ), ( )
( ) ( )( ) ( )q r
q r rp q q r T  
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(4) We need to show that ∀ ∈ − ∈γ πγ γ
γsupp mc( ) "( ),r p r ar  where a p rr⊆ −mc mc( )  is 

maximal permitted to r γ : Let γ ∈supp ( )r . Then q r ar
γ γ

γπ− ⊆ mc( ), "  where 

a q rr⊆ −mc mc( )  maximal permitted to r γ  and p q bq
γ γ

γπ− ∈ mc( ), "  where 

b p qq⊆ −mc mc( )  maximal permitted to q γ . So we have 

   

p r p q q r

a b a bq r r q r

γ γ γ γ γ γ

γ γ γπ π π π
− = − ∪ − =

∪ = ∪
( ) ( )

( ) ( ) ( ( ) )( ), ( ), ( ), ( ), ( )mc mc mc mc mc  
(5) We need to show that T Tp

p rr≤
−mc mc

r
( ) . So: 

T T T Tp
p q
q

q r
r

p q p r
r

q r r r r≤ ≤ =
− − − −mc mc mc mc mc mc mc mc( ) ( ) ( ) ( ) ( )( )  

(6) We need to show that ∀ ∈ ∀ < >∈γ νsuppr T p,  if ν  is permitted to r γ  then 

 π ν π π νγ γmc mc mc mc( ), ( ), ( ), ( )( ) ( ( ))p r p r=  

So: 
π ν π π ν

π π π ν π π ν
γ γ

γ γ

mc mc mc mc

mc mc mc mc mc mc mc mc

( ), ( ), ( ), ( )

( ), ( ), ( ) ( ), ( ) ( ), ( ), ( )

( ) ( ( ))

( ( ( ))) ( ( ))
p q p q

r q r p q r p r

= =

=  

�  

Definition 4.13: p q P, ∈ . We say that p q≤*  ( p  is a direct extension of q ) if 

(1) p q≤ . 

(2) For every γ ∈supp( )q  p qγ γ= .�  

Lemma 4.14: Let p P∈  and α > mc ( )p . Then there's q P∈  such that q p≤*  and 

mc( )q = α . 

Proof: Set S Tp
p= −πα, ( ) ( )mc

1 . For each � � ∈ν S  define 

B p pν
γγ ν= ∈ >{ ( ) | max( ) }supp 0 0 . These sets satisfy that ν ν ν ν1

0
2
0

1 2
≤ � ⊆B B , 

| |Bν ν≤ 0 , supp p B
S

=
< >∈

ν
ν
U . Take enumeration supp p = � < �γ ξ κξ |  which will satisfy 

Bν ξγ ξ ν⊆ <{ | }0 . Set Aξ =  { | ( ) ( ( ))}, ( ), , ( )� �∈ =ν π ν π π να γ γ αξ ξ
S p pmc mc . For each 

ξ , A Uξ α∈ . Set A A=
<

∆0

ξ κ ξ  and so A U∈ α . Shrink S  to A. Now, suppose � � ∈ν S  is 

permitted to pγ . Then there's ξ ν< 0 such that γ γ ξ= . As ν ξ∈ A  we have that 

π ν π π να γ γ αξ ξ, ( ), , ( )( ) ( ( ))= mc mcp p . Find now a t  such that t p0 0=  and define 

q p p f f h h p p T F Hp p p p p p p= − � � � � ∪( { , , , , , , ( ), , , , })* *0 0 mc mc  

{ , , , , , ,*
, ( )

*� �0 0p f f h hp p
p

p poπα mc  
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� � � �mc mc
mc( ), , , , , , }, ( )p p t S F Hp

p
pα παo  

Then q p≤*  as requested.�  

Convention: From now on whenever T  will be a Uα-tree of a condition the meaning 

of πβ α, ( )−1 T  will be the shrunken tree as constructed above. 

Lemma 4.15: Let p P∈  and β ∈ A. Then there's q P∈  such that q p≤*  and 

β ∈suppq . 

Proof: If β ∈supp p  then take q p= . 

If β ∉supp p  and β < mc( )p  then take q p p= ∪ � �{ , }β mc . 

Otherwise take α β> , ( )mc p  and using previous lemma find q p≤*  with α = mc( )q  

and now we can insert β  into the support.�  

Lemma 4.16: � ≤�P,  has the κ ++ -c.c. 

Proof: Take � < � ⊆++p Pξ ξ κ| . Set d pξ ξ= supp . Using ∆ -lemma we can extract a ∆ -

system of size κ ++  from  � < �++dξ ξ κ| . Without loss of generality assume we're 

starting with such sequence and its' kernel is d . The number of sequences we can put 

on d  is ( )κ κω κ< += . So now we can assume that ∀ < ++ξ ξ κ1 2,  ∀ ∈γ d  p pξ
γ

ξ
γ

1
=

2
. As 

the number of possible f h,  is κ  we can also assume that ∀ < ++ξ ξ κ1 2,  f fp pξ ξ1 2= , 

h hp pξ ξ1 2= . Let p nξ τ τ0
0= � �, ,K , τ κn+ =1 . Then ∀ < ++ξ κ  

� �∈j f p j hp p
1 1( )( ( )), ( )( )* *ξ ξ

ξ κmc ( ( , )( )Col τ κn
b n+ < × 

C( , )( , )
( , )

( )

τ τn
i

n e n i
d n i

i b n

+
+

+

≤ ≤
∏ ×

1

Col( , ))κ κ +
Μ1 . Set 

 Q n
b n= < ×+Col( , )( )τ κ C( ,( ) )( , )

( , )

( )

τ τn
i

n e n i
d n i

M
i b n

+
+

+

≤ ≤
∏ ×

1
1

Col( , )κ κ +
 

Then due to M M1 1⊇ κ  we have 

 Q n
b n= < ×+( ( , )( )Col τ κ C( , )( , )

( , )

( )

τ τn
i

n e n i
d n i

i b n

+
+

+

≤ ≤
∏ ×

1

Col( , ))κ κ+
Μ1  

 Q has the κ ++ -c.c. so we must have ξ ξ1 2,  such that 

� �j f p j hp p
1 1

1

1

1( )( ( )), ( )( ) |* *ξ ξ
ξ κmc  � �j f p j hp p

1 1
2

2

2( )( ( )), ( )( )* *ξ ξ
ξ κmc . The trees and 

the functions on them are compatible in all conditions so we have that p pξ ξ1 2
|| .�  

Lemma 4.17: λ κ< , n < ω  and ∀ <ξ λ  F ξ  is a function with dom F Tξ ξ=  which is a 

Uαξ
-tree such that ∀ ∈t T ξ  j F jt2 1( )( , ( ))ξ

ξ ξα α ∈In t+ +1. Then there's F  a function with 
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dom F T=  which is a Uα-tree satisfying j F jt2 1( )( , ( ))α αξ ξ ∈ In t+ +1 such that ∀ <ξ λ  

F F≤ ξ . 
Proof: First take β0  such that ∀ <ξ λ  β αξ0 > , then set S T0 1= −

<

πβ α ξ
ξ λ

ξ, ( )I . The proof 

will be done by induction on the levels of S 0 . Let S i  be a U
iβ -tree and t S i∈ , t i= . 

As In t+ +1 leaves in a κ + -closed forcing we can find q In t∈ + +1 such that ∀ <ξ λ  q ≤ 

j F j
i t2 1( )( , ( ))
, ( )π

ξ
ξ ξβ αξ

α α . Hence there're f t t i,β β≥  such that q = j f jt t t2 1( )( , ( ))β β . 

Then  

tttt
UFfA ttt β

λξ
αβαβ

ξ
π νπνπνννν

ξξξαβ
∈≤��=

<
� ))}(),((),(|,{ 2,1,)(2121 ,

 

. Pick now β βi i+ ≥1  such that ∀ ∈t S i  with t i=  we have β βi t+ ≥1 . Set 

′ =
+

−S S
i i

iπβ β1

1
, ( ) . Now we set S Si i i+ = ′1 |[ ] |[ ]κ κ  and S S At

i
t ti t

+ −= ′∩
+

1 1
1

πβ β, ( ) . Set 

F Fi i i i
i i

+ =
+

1
1

|[ ] |[ ],κ π κβ βo  ∀� �∈ +ν ν1 2
1, St

i  `. When the induction terminates we have 

� < �β ωi
i iS F i, , | . Pick α  such that ∀ <i ω  α β≥ i  and set �

ω
βαπ

<

−=′
i

iST
i

)(1
, . Let 

Bt = � �
<

{ , |ν ν
ξ λ

1 2I F t + ≤1
1 2( , )ν ν  F tπ

ξ
α α α αα αξ ξ ξ

π ν π ν
, ( ) , ,( ( ), ( ))}1 2 . Build by induction on 

levels T T Bt t t= ′∩  and set F Ft t
t

t t t
( , ) ( ( ), ( ))

, ( ) , ,ν ν π ν π νπ α β α βα β1 2
1

1 2
1 1 1

=
+ + +

+ .�  

Definition 4.18: Let p P∈ . Then { }pqPqpP ≤∈=/ . If τ ∈ p0 then ( / )P p
k≥ +τ  is 

P p/  from which we dropped the f h,  and parts of f *  working below τ+k  and 

( / )P p
k< +τ  are the dropped elements. 

Note 4.19: P p P p P p/ ( / ) ( / )= ×< ≥τ τ . 

Lemma 4.20: If p P∈  and τ ∈ p0 then � ≤ �≥ +

( / ) , *P p
kτ  is τ+k -closed and for k ≠ 1 

( / )P p
k< +τ  has τ+k -c.c. 

Proof: Obvious.�  

Definition 4.21: P p P p nn = ∈ ≥{ | | | }0  

Note 4.22: P Vn
n∈ . 

Definition 4.23: p P p∈ ≥, ( )γ mc , t ∈ <[ ]κ ω  0 -increasing 

 { }ξ
ξγ

ξ
γ πξξ ptspspp

def

t   topermitted maximal )(, supp^,)( ,, ⊆∈��=  

Claim 4.24: P satisfies Prikry condition. 
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Proof: The proof idea is to move on lots of possible extensions of u  looking for those 

which decides σ  and then combining all of them to one condition. That is if � � ∈ν1 T u  

then we search for a condition stronger than u  with ν1
0 as the second element in the 

normal Prikry sequence. The search is done on all the f 's as we have relatively few of 

them. On the other hand we have too much of the f * so we will move only on a 

maximal anti-chain there. Maximal anti-chains for h* are too long so the h* will be 

built as a monotonic decreasing sequence as they are closed enough and then using a 

denseness argument we'll find h* in the generic. When we have such a condition 

which decides σ  we accumulate its' Prikry sequences. All this will be done using 3 

nested inductions. The first induction will be ξ κ<  and  will move on most of  the 

elements of  Lev0 ( )T u . The second induction will be on ζ ζξ< . It will move on all 

Levy and Cohen functions which can appear when the Prikry sequence on the 0 

coordinate is � �ν µξ0
0 0,  and on all the sequences of projections of ν  to previous existing 

coordinates in the support. The last induction is on ρ ρζ< . The value of ρζ  isn't 

known before this step is started. We pick fρ
* and make sure that the sequence is anti-

chain. As the forcing the fρ
* belongs to has the κ -c.c. we will reach a point when we 

won't be able to pick another fρ
* . The length of the maximal anti-chain constructed 

will be ρζ . We make sure to throw away from the tree points which are below the 

length of the anti chains in order to avoid illegal conditions. 

In what follows we use the following convention: If we have � < �F Tζ ζ
ζβ ζ ζ, , | 0  then 

by writing ∀ <ζ ζ0  F F≤ ζ , β βζ≥  and  �
0

)(1
,

ζζ

ζ
ββ ζ

π
<

−= TT  we will mean that we got 

the F  using lemma 4.17, that the picked β  is larger than the filter dom F  is using and 

that T F≤ dom . 

Let { } PHFThfu uuuuu ∈������������∪ ,,,,,,,,0 0
*

0
*

0
0
0

αναν  and σ  a statement in the 

forcing language.  It'll be clear from the proof that if we had chosen a condition with 

longer Prikry sequences (i.e. we would have 

������ −−
*

10
*

10
00

0 ,,,,,,,,,, nnnnn hhhfff ��� νν ) the only thing which would happen is 
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that we would have to drag this sequence instead of just � � � � � �ν0
0 , ,* *f hu u  along the 

proof. The proof will be done with 2 lemmas. Roughly speaking, in the first lemma 

we will find a direct extension p u≤*  such that if there's σ||q p≤  then the minimal 

enlargement of p which can accommodate the collapsing part of q  also decides σ . In 

the second lemma we will find ′ ≤p p*  such that if q p≤ ′ , q p/≤ ′*  then q won't 

decide σ , which is a contradiction. 

Lemma 4.24.1: There are p S F H, , , ,β  such that 

1. We have 

{ } *
0

*
0,

*
0

0
0 ,,,,,,,,0 ≤������������∪ HFShfp uu β

αβ νβπν �  

{ }�����������∪ uuuuu HFThfu ,,,,,,,,0 0
*

0
*

0
0
0

αναν  

2. If there are HFThhhfffq nnnnn ′′′�′��′��� −− ,,,,,,,,,,,,,,, *
10

*
100 ���

δδ ννδ  such that  

σ − ∪|| q { ,,,,,,,,,,,0 *
10

*
10

00
0 �′��′���� −− nnnnn hhhfff ��� νν  

}≤�′′′��� HFTn ,,,,,, 0
δδ ννδ �  

{ }�����������∪ HFShfp uu ,,,,,,,,0 0
*

0,
*

0
0
0

β
αβ νβπν �  

then ∃ ′′ ≤ ′ ∀ ′ ≥f fn n
* * , δ δ , ∀� �ν νε ε

0 ,K n  we have 
( )

, ,
p

nβ ν νβ β< >
∪

0 K

{ ,)(,,,,,,,,,,0 00
0 ,,10,

*
10

00
0 ��−���′′����

><−′−
n

Hhhfff nnnn ννδδπνν
�

����  

� � ��β ν νβ β, , , ,0 K n  

} σππννδ ννβδννβδ
δδ

ββ −���′�
��′��

−
′

′′ ||,,,,,, 00
00 ,,,

1
,0

nn
HFSn ��

��  

Note: The values we choose to �� ′′ δδ νν n�,0  can be anything. (As long as it is a 

condition) 
Proof: We'll shrink T u so that πα ,0T

u will contain only inaccessibles. Set p  to be a 

well ordering of T u |[ ]κ  such that 0
2

0
121 µµµµ ≤�� .  

 
Work in V 2: 
 
Pick %h  such that ),)((),)(

~
( 1212 κκκκ uHjhj ≤ . 

Take µ κα
0 = min |[ ]p T u  and set u u0 = . 

 
Let �� � < �f h0

0
0
0

0
, ,, |ζ ζ ζ ζ  be enumeration of conditions from 
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 [Col C( , ) ( , )]( )
( , )

( , )

( )

ν µ ν µ0
0 0

0
0

0
0

0 0
0 0

1 0

+ +
+
+

≤ ≤

< × ×∏b j
e j
d j

j b

Col( , )µ µ0
0

0
0 +  

 which are stronger than � �f hu u
0 0 0 0

0* *( ), ( )µ µα . 
Pick f b j

e j
d j

j b
M1 0

0 1
0
0

0 1
1

1 1
2

∈ < ×+ +
+

+

≤ ≤
∏(Col C( , ) ( , ))( )

( , )
( , )

( )

µ κ µ µ  (Note that when e j( , )1 1=  by 

µ0 1+e j( , )  we mean κ ), h M1 2
∈ +( ( , ))Col κ κ  such that f j F u

1 2
0

≤
� �

( )( )µα α , 

h j h1 2 0
0≤ ( %)( , )µ κ  and ′′β , ′′f1

*, ′′h1
*such that j f f2 1 1( )( )*′′ ′′ =β , j h h2 1 1( )( )*′′ =κ . Now 

set 
′′ = ′′

−
� �

S T uπβ α µα,
1

0
 ′′ =

� � ′′F F u
µ β αα π

0
o ,  ′′ =

� �
H H u

µ0
0 . 

If there's 
σ || q f f h h S F H∪ � � � � ′ � � ′ �� � ′ � � ′ ′ ′� ≤′ ′{ , , , , , , , , , , , , }, * , * *0 0

0
0
0

0
0 0

1 0
0 0

1 0 0ν µ β ν µβ β  
( ) { , , , , , , , , , , , , }

,
, * , *u f f h h S F H0 0

0
0
0

0
0 0

1 0
0 0

1 0 0
0

0
� � ��

′′ ′′∪ � � � � ′′ � � ′′ � � ′′ � � ′′ ′′ ′′�α µ
β β

α ν µ β ν µ  

then 
p q u0 0 0 0

0
, , ,

( )= −
� � ��α µα  f f1

0 0 0
1

, , * *= ′  h h1
0 0 0

1
, , * *= ′  S S0 0 0, , = ′  F F0 0 0, , = ′

 H H0 0 0, , = ′  β β0 0 0, , = ′  
else 

p0 0 0, , = ∅ f f1
0 0 0

1
, , * *= ′′  h h1

0 0 0
1

, , * *= ′′  S S0 0 0, , = ′′  F F0 0 0, , = ′′
 H H0 0 0, , = ′′  β β0 0 0, , = ′′ 

 
Now suppose we have � < �p S F H f h0 0

0 0 0 0 0 0
1
0 0

1
0 0

0 0, ,
, , , , , , , , * , , *

, ,, , , , , , |ρ
ρ ρ ρ ρ ρ

ρβ ρ ρ . By 

construction � < �j f2 1
0 0

0 0( )( )|, , *

, ,
ρ

ρβ ρ ρ  is an anti-chain and � < �j h2 1
0 0( )( )|, , *ρ κ ρ ρ  is a 

decreasing sequence. If the anti-chain is maximal then the induction on ρ  is finished. 
So suppose it's not a maximal anti-chain.  
Pick f b j

e j
d j

j b
M1 0

0 1
0
0

0 1
1

1 1
2

∈ < ×+ +
+

+

≤ ≤
∏(Col C( , ) ( , ))( )

( , )
( , )

( )

µ κ µ µ , f j F u
1 2

0
≤

� �
( )( )µα α  which is 

incompatible with � < �j f2 1
0 0

0 0( )( )|, , *

, ,
ρ

ρβ ρ ρ  and h M1 2
∈ +( ( , ))Col κ κ  which is stronger 

than  � < �j h2 1
0 0( )( )|, , *ρ κ ρ ρ  and ′′β , ′′f1

* , ′′h1
* such that j f f2 1 1( )( )*′′ ′′ =β , 

j h h2 1 1( )( )*′′ =κ . 
If ρ ρ= +1 then set 

′′ = ′′
−

0 0
S Sπβ β

ρ
ρ,

, ,
, ,

1 0 0  ′′ = ′′ 0 0
F F 0 0, ,

, , ,

ρ
β βπ

ρ
o  ′′ =H H 0 0, ,ρ  ′′ =p p0 0, ,ρ . 

Otherwise 

�
ρρ

ρ
ββ ρ

π
<

−
′′ 00

=′′ ,0,01
, ,,

SS  ∀ < ′′ ≤ ′′ 0 0
ρ ρ πρ

β β ρ
F F 0 0, ,

, , ,
o  ∀ < ′′ ≤ρ ρ ρH H 0 0, ,  

′′ =
<

p p0 0, ,ρ
ρ ρ
U . 

This last union might cause a problem for large enough ρ . Namely 
′′ ∪ ∪ � � � � ′′ � � ′′ �� � ′′ � � ′′ ′′ ′′�

� < ��

′′ ′′p u f f h h S F H( ) { , , , , , , , , , , , , }
,

, * , *
0 0

0
0
0

0
0 0

1 0
0 0

1 0 0
0

0α µ
β β

α ν µ β ν µ
 

might not be a condition. (in ′′p  there are too many coordinates which can be 
enlarged together). The solution is to shrink ′′S  so all these continuations won't be 
possible. Let's set 
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C0 0 0
0

, , { | }ρ η ρ η µ= > >inaccessible . This set is bounded hence C U0 0 0, ,ρ ∉  so we can 

shrink ′′S  to ′′ − ′′
−S Cπβ ρ, , ,( )0

1
0 0 . 

If there's 
σ || q f f h h S F H∪ � � � � ′ � � ′ �� � ′ � � ′ ′ ′� ≤′ ′{ , , , , , , , , , , , , }, * , * *0 0

0
0
0

0
0 0

1 0
0 0

1 0 0ν µ β ν µβ β  
′′ ∪ ∪ � � � � ′′ � � ′′ �� � ′′ � � ′′ ′′ ′′�

� < ��

′′ ′′p u f f h h S F H( ) { , , , , , , , , , , , , }
,

, * , *
0 0

0
0
0

0
0 0

1 0
0 0

1 0 0
0

0α µ
β β

α ν µ β ν µ
 

then 
p q u0 0 0

0
, , ,

( )ρ α µα= −
� � ��

 f f1
0 0

1
, , * *ρ = ′  h h1

0 0
1

, , * *ρ = ′  S S0 0, ,ρ = ′  F F0 0, ,ρ = ′

 H H0 0, ,ρ = ′  β βρ0 0, , = ′  
else 

p p0 0, ,ρ = ′′ f f1
0 0

1
, , * *ρ = ′′  h h1

0 0
1

, , * *ρ = ′′  S S0 0, ,ρ = ′′ F F0 0, ,ρ = ′′
 H H0 0, ,ρ = ′′ β βρ0 0, , = ′′  

 
When the induction is finished we have � < �j f2 1

0 0
0 0 0( )( )|, , *

, ,
ρ

ρβ ρ ρ  a maximal anti-

chain below j F u
2

0
( )( )

� �µα α  and � < �j h2 1
0 0

0( )( )|, , *ρ κ ρ ρ  a decreasing sequence. 

We'll continue with the general case. Assume � < �j f2 1
0

0
( )( )|, , *

, ,
ζ ρ

ζ ρ ζβ ρ ρ  is a maximal 

anti-chain below j F u
2

0
( )( )

< >µα α  for all ζ ζ<  and � < < �j h2 1
0( )( )| ,, , *ζ ρ

ζκ ρ ρ ζ ζ  is a 

decreasing sequence. 
Pick f b j

e j
d j

j b
M1 0

0 1
0
0

0 1
1

1 1
2

∈ < ×+ +
+

+

≤ ≤
∏(Col C( , ) ( , ))( )

( , )
( , )

( )

µ κ µ µ , f j F u
1 2

0
≤

� �
( )( )µα α  and 

h M1 2
∈ +( ( , ))Col κ κ  which is stronger than � < < �j h2 1

0( )( )| ,, , *ζ ρ
ζκ ρ ρ ζ ζ  and ′′β , ′′f1

* , 

′′h1
* such that j f f2 1 1( )( )*′′ ′′ =β , j h h2 1 1( )( )*′′ =κ . 

Set 

�
ζ

ρζ

ρρ
ζζ

ρζ
ββπ

<
<

−
′′

0
=′′ ,,01

, ,,
SS  ∀ < < ′′ ≤ ′′ 0

ζ ζ ρ ρ πζ
ζ ρ

β β ζ ρ
F F 0, ,

, , ,
o

 ∀ < < ′′ ≤ζ ζ ρ ρζ
ζ ρH H 0, ,  

′′ =
<
<

p p
0, ,ζ ρ

ζ ζ
ρ ρζ

U  C0 0
0

, { | }ζ η ζ η µ= > >inaccessible  

and shrink ′′S  to ′′ − ′′
−S Cπβ ζ, ,0

1
0 .  

 
If there's 

σ || q f f h h S F H∪ � � � � ′ � � ′ �� � ′ � � ′ ′ ′� ≤′ ′{ , , , , , , , , , , , , }, * , * *0 0
0

0
0

0
0

1 0
0

1 0 0ν µ β ν µζ ζ β β  
′′ ∪ ∪ � � � � ′′ � � ′′ �� � ′′ � � ′′ ′′ ′′�

� < ��

′′ ′′p u f f h h S F H( ) { , , , , , , , , , , , , }
,

, * , *
0 0

0
0
0

0
0

1 0
0

1 0 0
0

0α µ
ζ ζ β β

α ν µ β ν µ
 

then 
p q u0 0 0

0
, , ,

( )ζ α µα= −
� � ��

 f f1
0 0

1
, , * *ζ = ′  h h1

0 0
1

, , * *ζ = ′  S S0 0, ,ζ = ′  F F0 0, ,ζ = ′

 H H0 0, ,ζ = ′  β βζ0 0, , = ′  
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else 
p p0 0, ,ζ = ′′ f f1

0 0
1

, , * *ζ = ′′  h h1
0 0

1
, , * *ζ = ′′  S S0 0, ,ζ = ′′  F F0 0, ,ζ = ′′

 H H0 0, ,ζ = ′′  β βζ0 0, , = ′′ 
 
Now suppose we have � < �p S F H f h0

0 0 0
1
0

1
0

0, ,
, , , , , , , , * , , *

, ,, , , , , , |ζ ρ
ζ ρ ζ ρ ζ ρ ζ ρ ζ ρ

ζ ρβ ρ ρ . By 

construction � < �j f2 1
0

0( )( )|, , *

, ,
ζ ρ

ζ ρβ ρ ρ  is an anti-chain and � < �j h2 1
0( )( )|, , *ζ ρ κ ρ ρ  is a 

decreasing sequence. If the anti-chain is maximal below j F u
2 ( )( )

< >0µα α  then the 

induction on ρ  is finished. So suppose it's not a maximal anti-chain.  
Pick f b j

e j
d j

j b
M1 0

0 1
0
0

0 1
1

1 1
2

∈ < ×+ +
+

+

≤ ≤
∏(Col C( , ) ( , ))( )

( , )
( , )

( )

µ κ µ µ , f j F u
1 2≤

� �0
( )( )µα α  which is 

incompatible with � < �j f2 1
0

0( )( )|, , *

, ,
ζ ρ

ζ ρβ ρ ρ  and h M1 2
∈ +( ( , ))Col κ κ  which is stronger 

than � < �j h2 1
0( )( )|, , *ζ ρ κ ρ ρ  and ′′β , ′′f1

* , ′′h1
* such that j f f2 1 1( )( )*′′ ′′ =β , 

j h h2 1 1( )( )*′′ =κ . 
If ρ ρ= +1 then set 

′′ = ′′
−

0
S Sπβ β

ζ ρ
ζ ρ,

, ,
, ,

1 0  ′′ = ′′ 0
F F 0, ,

, , ,

ζ ρ
β βπ

ζ ρ
o  ′′ =H H 0, ,ζ ρ  ′′ =p p0, ,ζ ρ . 

Otherwise 

�
ρρ

ρζ
ββ ρζ

π
<

−
′′ 0

=′′ ,,01
, ,,

SS  ∀ < ′′ ≤ ′′ 0
ρ ρ πζ ρ

β β ζ ρ
F F 0, ,

, , ,
o  ∀ < ′′ ≤ρ ρ ζ ρH H 0, ,  

′′ =
<

p p0, ,ζ ρ
ρ ρ
U . 

This last union might cause a problem for large enough ρ . Namely 
′′ ∪ ∪ � � � � ′′ � � ′′ �� � ′′ � � ′′ ′′ ′′�

� � ��

′′ ′′p u f f h h S F H( ) { , , , , , , , , , , , , }
,

, * , *
0 0

0
0
0

0
0

1 0
0

1 0 0
0

0α µ
ζ ζ β β

α ν µ β ν µ
 

might not be a condition. (in ′′p  there are too many coordinates which can be 
enlarged together). The solution is to shrink ′′S  so all these continuations won't be 
possible. Let's set 
C0 0

0
, , { | }ζ ρ η ρ η µ= > >inaccessible . This set is bounded hence C U0 0, ,ζ ρ ∉  so we can 

shrink ′′S  to ′′ − ′′
−S Cπβ ζ ρ, , ,( )0

1
0 . 

If there's 
σ || q f f h h S F H∪ � � � � ′ � � ′ �� � ′ � � ′ ′ ′� ≤′ ′{ , , , , , , , , , , , , }, * , * *0 0

0
0
0

0
0

1 0
0

1 0 0ν µ β ν µζ ζ β β  
′′ ∪ ∪ � � � � ′′ � � ′′ �� � ′′ � � ′′ ′′ ′′�

� � ��

′′ ′′p u f f h h S F H( ) { , , , , , , , , , , , , }
,

, * , *
0 0

0
0
0

0
0

1 0
0

1 0 0
0

0α µ
ζ ζ β β

α ν µ β ν µ
 

then 
p q u0 0

0
, , ,

( )ζ ρ α µα= −
� � ��

 f f1
0

1
, , * *ζ ρ = ′  h h1

0
1

, , * *ζ ρ = ′  S S0, ,ζ ρ = ′  F F0, ,ζ ρ = ′

 H H0, ,ζ ρ = ′  β βζ ρ0, , = ′  
else 

p p0, ,ζ ρ = ′′ f f1
0

1
, , * *ζ ρ = ′′  h h1

0
1

, , * *ζ ρ = ′′  S S0, ,ζ ρ = ′′ F F0, ,ζ ρ = ′′
 H H0, ,ζ ρ = ′′ β βζ ρ0, , = ′′  
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When the induction on ρ  is finished we have � < �j f2 1
0

0( )( )|, , *

, ,
ζ ρ

ζ ρ ζβ ρ ρ  a maximal 

anti-chain below j F u
2 ( )( )

� �0µα α  and � < �j h2 1
0( )( )|, , *ζ ρ

ζκ ρ ρ  a decreasing sequence. 

When the induction on ζ  is finished we have � < �j f2 1
0

0( )( )|, , *

, ,
ζ ρ

ζ ρ ζβ ρ ρ  a maximal 

anti-chain below j F u
2 ( )( )

< >0µα α for all ζ ζ< 0  and � < < �j h2 1
0

0( )( )| ,, , *ζ ρ
ζκ ρ ρ ζ ζ  a 

decreasing sequence. 
We'll continue with the general case. We have �� � < �f h0

0
0
0

0
, ,, |ζ ζ ζ ζ  a maximal anti-

chain below j F u
2 ( )( )

� �0µα α  for all Error! Objects cannot be created from editing field codes. 

for all Error! Objects cannot be created from editing field codes. and 

� < < �j h2 1( )( )| ,, , *ξ ζ ρ
ζ ξκ ρ ρ ζ ζ  a decreasing sequence for all ξ ξ< . 

If ξ ξ= +1 then set 
 u u pξ ξ ξ ζ ρ

ζ ζ ρ ρξ ζ

= ∪
< <

, ,
,

U , C C Cξ ξ ζ
ζ ζ

ξ ζ ρ
ζ ζ ρ ρξ ξ ζ

= ∪
< < <

, , ,
,

U U . 

Else set  
 u uξ ξ

ξ ξ
=

<
U , C Cξ ξ

ξ ξ
=

<
U . 

Pick }|][|{min 1
0,

α
ξξα

α
ξ µµξξπκµµ ≠<∀−∈= − CT u� . 

Let �� > < �f h0 0
ξ ζ ξ ζ

ξζ ζ, ,, |  be enumeration of conditions from  

[Col C( , ) ( , )]( )
( , )

( , )

( )

ν µ ν µξ ξ0
0 0 0

0
0

0
0 0

1 0

+ +
+
+

≤ ≤

< × ×∏b j
e j
d j

j b

Col( , )µ µξ ξ
0 0 +  

which are stronger than � �f hu u
0 0

0* *( ), ( )µ µξ
α

ξ . 
Pick f b j

e j
d j

j b
M1

0 1
0
0

1
1

1 1
2

∈ < ×+ +
+

+

≤ ≤
∏(Col C( , ) ( , ))( )

( , )
( , )

( )

µ κ µ µξ ξ  (Here also by µξ +e j( , )1  when 

e j( , )1 1=  we mean κ), h M1 2
∈ +( ( , ))Col κ κ  such that f j F u

1 2≤
� �>

( )( )µξ
α α , 

h j h1 2
0≤ ( %)( , )µ κξ  and ′′β , ′′f1

* , ′′h1
* such that j f f2 1 1( )( )*′′ ′′ =β , j h h2 1 1( )( )*′′ =κ . Now 

set 
′′ = −′′

−
< > ′′

−S T Cuπ πβ α µ β ξξ
α, ,

1
0

1  αβµ πα
ξ ,′′><

=′′ �
uFF  ′′ =

� �
H H u

µξ
0  

If there's 
σ || q f f h h S F H∪ � � � � ′ � � ′ �� � ′ � � ′ ′ ′� ≤′ ′{ , , , , , , , , , , , , }, * , * *0 0

0 0
0

0
1 0

0
1 0ν µ β ν µξ

ξ ξ β
ξ
β  

( ) { , , , , , , , , , , , , }
,

, * , *u f f h h S F Hξ α µ ξ
ξ ξ β

ξ
β

ξ
α ν µ β ν µ

� � ��

′′ ′′∪ � � � � ′′ � � ′′ �� � ′′ � � ′′ ′′ ′′�0 0
0 0

0
0

1 0
0

1 0  

then 
p q uξ ξ α µξ

α, , ,
( )0 0 = −

� � ��
 f f1

0 0
1

ξ, , * *= ′  h h1
0 0

1
ξ, , * *= ′  S Sξ, ,0 0 = ′  F Fξ, ,0 0 = ′

 H Hξ, ,0 0 = ′  β βξ, ,0 0 = ′  
else 

pξ, ,0 0 = ∅  f f1
0 0

1
ξ, , * *= ′′  h h1

0 0
1

ξ, , * *= ′′  S Sξ, ,0 0 = ′′ F Fξ, ,0 0 = ′′
 H Hξ, ,0 0 = ′′ β βξ, ,0 0 = ′′  

 
Now suppose we have � < �p S F H f hξ ρ

ξ ρ ξ ρ ξ ρ ξ ρ ξ ρ
ξ ρβ ρ ρ, ,

, , , , , , , , * , , *

, ,, , , , , , |0
0 0 0

1
0

1
0

0 . By 

construction � < �j f2 1
0

0( )( )|, , *

, ,
ξ ρ

ξ ρβ ρ ρ  is an anti-chain and � < �j h2 1
0( )( )|, , *ξ ρ κ ρ ρ  is a 



Possible values for 2ℵn  and 2ℵω  

-34- 

decreasing sequence. If the anti-chain is maximal then the induction on ρ  is finished. 
So suppose it's not a maximal anti-chain.  
Pick f b j

e j
d j

j b
M1

0 1
0
0

1
1

1 1
2

∈ < ×+ +
+

+

≤ ≤
∏(Col C( , ) ( , ))( )

( , )
( , )

( )

µ κ µ µξ ξ  such that f j F u
1 2≤

� �
( )( )µξ

α α  

which is incompatible with � < �j f2 1
0

0( )( )|, , *

, ,
ξ ρ

ξ ρβ ρ ρ  and h M1 2
∈ +( ( , ))Col κ κ  which 

is stronger than � < �j h2 1
0( )( )|, , *ξ ρ κ ρ ρ  and ′′β , ′′f1

* , ′′h1
* such that j f f2 1 1( )( )*′′ ′′ =β , 

j h h2 1 1( )( )*′′ =κ . 
If ρ ρ= +1 then set 

′′ = ′′
−

0
S Sπβ β

ξ ρ
ξ ρ,

, ,
, ,

1 0  ′′ = ′′ 0
F F ξ ρ

β βπ
ξ ρ

, ,
, , ,

0 o  ′′ =H H ξ ρ, ,0  ′′ =p pξ ρ, ,0 . 

Otherwise 

�
ρρ

ρξ
ββ ρξ

π
<

−
′′ 0

=′′ ,0,1
, ,,

SS  ∀ < ′′ ≤ ′′ 0
ρ ρ πξ ρ

β βξ ρ
F F , ,

, , ,

0 o  ∀ < ′′ ≤ρ ρ ξ ρH H , ,0  

′′ =
<

p pξ ρ
ρ ρ

, ,0U . 

This last union might cause a problem for large enough ρ . Namely 
′′ ∪ ∪ � � � � ′′ � � ′′ �� � ′′ � � ′′ ′′ ′′�

� ��

′′ ′′p u f f h h S F H( ) { , , , , , , , , , , , , }
,

, * , *
ξ α µ ξ

ξ ξ β
ξ
β

ξ
α ν µ β ν µ0 0

0 0
0

0
1 0

0
1 0  

might not be a condition. (in ′′p  there are too many coordinates which can be 
enlarged together). The solution is to shrink ′′S  so all these continuations won't be 
possible. Let's set 
Cξ ρ ξη ρ η µ, , { | }0

0= > >inaccessible . This set is bounded hence C Uξ ρ, ,0 0∉  so we can 
shrink ′′S  to ′′ − ′′

−S Cπβ ξ ρ, , ,( )0
1

0 . 
If there's 

σ ν µ β ν µξ
ξ ξ β

ξ
β|| { , , , , , , , , , , , , }, * , * *q f f h h S F H∪ � � � ′ � � ′ �� � ′ � � ′ ′ ′� ≤′ ′0 0

0 0
0

0
1 0

0
1 0  

′′ ∪ ∪ � � � � ′′ � � ′′ �� � ′′ � � ′′ ′′ ′′�
� � ��

′′ ′′p u f f h h S F H( ) { , , , , , , , , , , , , }
,

, * , *
ξ α µ ξ

ξ ξ β
ξ
β

ξ
α ν µ β ν µ0 0

0 0
0

0
1 0

0
1 0

 
then 

p q uξ ρ ξ α µξ
α, , ,

( )0 = −
� � ��

 f f1
0

1
ξ ρ, , * *= ′  h h1

0
1

ξ ρ, , * *= ′  S Sξ ρ, ,0 = ′  F Fξ ρ, ,0 = ′

 H Hξ ρ, ,0 = ′  β βξ ρ, ,0 = ′ 
else 

p pξ ρ, ,0 = ′′  f f1
0

1
ξ ρ, , * *= ′′  h h1

0
1

ξ ρ, , * *= ′′  S Sξ ρ, ,0 = ′′  F Fξ ρ, ,0 = ′′
 H Hξ ρ, ,0 = ′′  β βξ ρ, ,0 = ′′  

 
When the induction is finished we have � < �j f2 1

0
0 0( )( )|, , *

, ,
ξ ρ

ξ ρβ ρ ρ  a maximal anti-

chain below j F u
2 ( )( )

< >µξ
α α  and � < �j h2 1

0
0( )( )|, , *ξ ρ κ ρ ρ  is a decreasing sequence. 

We'll continue with the general case. Assume � < �j f2 1( )( )|, , *

, ,
ξ ζ ρ

ξ ζ ρ ζβ ρ ρ  is a maximal 

anti-chain below j F u
2 ( )( )

� �µξ
α α  for all ζ ζ<  and � < < �j h2 1( )( )| ,, , *ξ ζ ρ

ζκ ρ ρ ζ ζ  is a 

decreasing sequence. 
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Pick f b j
e j

d j

j b
M1

0 1
0
0

1
1

1 1
2

∈ < ×+ +
+

+

≤ ≤
∏(Col C( , ) ( , ))( )

( , )
( , )

( )

µ κ µ µξ ξ , f j F u
1 2≤

� �
( )( )µξ

α α  and 

h M1 2
∈ +( ( , ))Col κ κ  which is stronger than � < < �j h2 1( )( )| ,, , *ξ ζ ρ

ζκ ρ ρ ζ ζ  and ′′β , ′′f1
* , 

′′h1
* such that j f f2 1 1( )( )*′′ ′′ =β , j h h2 1 1( )( )*′′ =κ . 

Set 

�
ζ

ρζξ

ρρ
ζζ

ρζξ
ββπ

<
<

−
′′=′′ ,,1
, ,,

SS  ∀ < < ′′ ≤ ′′ζ ζ ρ ρ πζ
ξ ζ ρ

β βξ ζ ρ
F F , ,

, , ,
o

 ∀ < < ′′ ≤ζ ζ ρ ρζ
ξ ζ ρH H , ,  

′′ =
<
<

p pξ ζ ρ
ζ ζ
ρ ρζ

, ,U  Cξ ζ ξη ρ η µ, { | }= > >inaccessible 0  

and shrink ′′S  to ′′ − ′′
−S Cπβ ξ ζ, ,0

1 .  
 
If there's 

σ ν µ β ν µξ
ξ ζ ξ ζ β

ξ
β|| { , , , , , , , , , , , , }, * , * *q f f h h S F H∪ � � � � ′ � � ′ �� � ′ � � ′ ′ ′� ≤′ ′0 0

0 0
0 1 0 1 0  

′′ ∪ ∪ � � � � ′′ � � ′′ �� � ′′ � � ′′ ′′ ′′�
� � ��

′′ ′′p u f f h h S F H( ) { , , , , , , , , , , , , }
,

, * , *
ξ α µ ξ

ξ ζ ξ ζ β
ξ
β

ξ
α ν µ β ν µ0 0

0 0
0 1 0 1 0

 
then 

p q uξ ζ ξ α µξ
α, , ,

( )0 = −
� � ��

 f f1
0

1
ξ ζ, , * *= ′  h h1

0
1

ξ ζ, , * *= ′  S Sξ ζ, ,0 = ′  F Fξ ζ, ,0 = ′

 H Hξ ζ, ,0 = ′  β βξ ζ, ,0 = ′  
else 

p pξ ζ, ,0 = ′′ f f1
0

1
ξ ζ, , * *= ′′  h h1

0
1

ξ ζ, , * *= ′′  S Sξ ζ, ,0 = ′′ F Fξ ζ, ,0 = ′′
 H Hξ ζ, ,0 = ′′ β βξ ζ, ,0 = ′′  

 
Now suppose we have � < �p S F H f hξ ζ ρ

ξ ζ ρ ξ ζ ρ ξ ζ ρ ξ ζ ρ ξ ζ ρ
ξ ζ ρβ ρ ρ, ,

, , , , , , , , * , , *

, ,, , , , , , |1 1 . By 

construction � < �j f2 1( )( )|, , *

, ,
ξ ζ ρ

ξ ζ ρβ ρ ρ  is an anti-chain and � < �j h2 1( )( )|, , *ξ ζ ρ κ ρ ρ  is a 
decreasing sequence. If the anti-chain is maximal below j F u

2 ( )( )
� �µξ

α α  then the 

induction on ρ  is finished. So suppose it's not a maximal anti-chain.  
Pick f b j

e j
d j

j b
M1

0 1
0
0

1
1

1 1
2

∈ < ×+ +
+

+

≤ ≤
∏(Col C( , ) ( , ))( )

( , )
( , )

( )

µ κ µ µξ ξ , f j F u
1 2≤

� �
( )( )µξ

α α  which is 

incompatible with � < �j f2 1( )( )|, , *

, ,
ξ ζ ρ

ξ ζ ρβ ρ ρ  and h M1 2
∈ +( ( , ))Col κ κ  which is stronger 

than � < �j h2 1( )( )|, , *ξ ζ ρ κ ρ ρ  and ′′β , ′′f1
* , ′′h1

* such that j f f2 1 1( )( )*′′ ′′ =β , 
j h h2 1 1( )( )*′′ =κ . 

If ρ ρ= +1 then set 
′′ = ′′

−S Sπβ β
ξ ζ ρ

ξ ζ ρ,
, ,

, ,

1  ′′ = ′′F F ξ ζ ρ
β βπ

ξ ζ ρ

, ,
, , ,

o  ′′ =H H ξ ζ ρ, ,  ′′ =p pξ ζ ρ, , . 

Otherwise 

�
ρρ

ρζξ
ββ ρζξ

π
<

−
′′=′′ ,,1
, ,,

SS  ∀ < ′′ ≤ ′′ρ ρ πξ ζ ρ
β βξ ζ ρ

F F , ,
, , ,

o  ∀ < ′′ ≤ρ ρ ξ ζ ρH H , ,  

′′ =
<

p pξ ζ ρ
ρ ρ

, ,U . 
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This last union might cause a problem for large enough ρ . Namely 
′′ ∪ ∪ � � � � ′′ � � ′′ �� � ′′ � � ′′ ′′ ′′�

� � ��

′′ ′′p u f f h h S F H( ) { , , , , , , , , , , , , }
,

, * , *
α µ ξ

ξ ζ ξ ζ β
ξ
β

ξ
α ν µ β ν µ0 0

0 0
0 1 0 1 0  

might not be a condition. (in ′′p  there are too many coordinates which can be 
enlarged together). The solution is to shrink ′′S  so all these continuations won't be 
possible. Let's set 
Cξ ζ ρ ξη ρ η µ, , { | }= > >inaccessible 0 . This set is bounded hence C Uξ ζ ρ, , ∉ 0  so we can 
shrink ′′S  to ′′ − ′′

−S Cπβ ξ ζ ρ, , ,( )0
1 . 

If there's 
σ ν µ β ν µξ

ξ ζ ξ ζ β
ξ
β|| { , , , , , , , , , , , , }, * , * *q f f h h S F H∪ � � � � ′ � � ′ �� � ′ � � ′ ′ ′� ≤′ ′0 0

0 0
0 1 0 1 0  

′′ ∪ ∪ � � � � ′′ � � ′′ �� � ′′ � � ′′ ′′ ′′�
� � ��

′′ ′′p u f f h h S F H( ) { , , , , , , , , , , , , }
,

, * , *
ξ α µ ξ

ξ ζ ξ ζ β
ξ
β

ξ
α ν µ β ν µ0 0

0 0
0 1 0 1 0

 
then 

p q uξ ζ ρ ξ α µξ
α, , ,

( )= −
� � ��

 f f1 1
ξ ζ ρ, , * *= ′  h h1 1

ξ ζ ρ, , * *= ′  S Sξ ζ ρ, , = ′  F Fξ ζ ρ, , = ′

 H Hξ ζ ρ, , = ′  β βξ ζ ρ, , = ′ 
else 

p pξ ζ ρ, , = ′′  f f1 1
ξ ζ ρ, , * *= ′′  f h1 1

ξ ζ ρ, , * *= ′′  S Sξ ζ ρ, , = ′′  F Fξ ζ ρ, , = ′′
 H Hξ ζ ρ, , = ′′  β βξ ζ ρ, , = ′′  

 
When the induction on ρ  is finished we have � < �j f2 1( )( )|, , *

, ,
ξ ζ ρ

ξ ζ ρ ζβ ρ ρ  a maximal 

anti-chain below j F u
2 ( )( )

< >µξ
α α  and � < �j h2 1( )( )|, , *ξ ζ ρ

ζκ ρ ρ  a decreasing sequence. 

When the induction on ζ  is finished we have � < �j f2 1( )( )|, , *

, ,
ξ ζ ρ

ξ ζ ρ ζβ ρ ρ  is a maximal 

anti-chain below j F u
2 ( )( )

� �µξ
α α  for all ζ ζξ<  and � < < �j h2 1( )( )| ,, , *ξ ζ ρ

ζ ξκ ρ ρ ζ ζ  a 

decreasing sequence. 
When the induction on ξ  is finished we have � < �j f2 1( )( )|, , *

, ,
ξ ζ ρ

ξ ζ ρ ζβ ρ ρ  is a maximal 
anti-chain below j F u

2 ( )( )
� �µξ

α α  for all ζ ζξ<  for all ξ κ<  and 

� < < �j h2 1( )( )| ,, , *ξ ζ ρ
ζ ξκ ρ ρ ζ ζ  a decreasing sequence for all ξ κ< . 

 
Set C = <{ | }µ ξ κξ

0 . 
We claim that C U∈ 0 . If not we'll define a regressive function on 
R T Cu: ( |[ ]),π κ κα 0 − →  as follows: By our construction if µ π κα∈ −, ( |[ ])0 T Cu  then 
there's a unique ξ κ<  such that µ µ µξ ξ

0
1

0< < +  so set R( )µ µξ= 0 . Hence there's ξ κ<  
and A T Cu⊆ −π κα , ( |[ ])0 , A U∈ 0  such that ∀ ∈µ A  R( )µ µξ= 0 . This can happen if 
ζ κξ =  or if there's ζ ζξ<  such that ρ κζ = . By construction neither of this cases can 
happen so he have a contradiction. 
 
Let's set 
p u1 =

<
ξ

ξ κ
U  ′ = ∩− −S T Cu1 1

0
1

1 1
π πβ α β, ,  
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S S1 1|[ ] |[ ]κ κ= ′  

�
ζ
ξ

ρζξ

ρρ
ζζ

ρζξ
ββνν π

<
<

−
���� ∩′= ,,1

,
11

,,1
SSS  where π ν µβ α ξ

α
1 , ( ) = . 

F F u1
1 2 1 21

( , ) ( , ),ν ν π ν νβ α= o  

),,(),,( 2,
,,

2
1

,,11 nn FF ννπνν
ρζξββ

ρζξ
ν ��� ≤��  where π ν µβ α ξ

α
1 1, ( ) = . 

),,(),,( 00
2

,,00
2

1
0
1

ll HH νννν ρζξ
ν �� ≤

��
 where ν π µα ξ

α
1
0 = 0, ( ) . 

We can't just take H h1
1
0

2
0

1 2
0( , ) ( ), , *ν ν νξ ζ ρ≤  where ν π µα ξ1

0
0

0= , ( )  as we need 
j H2

1
1( )( , )κ κ  to be in the generic. 

So we'll show what we have gained for a close enough condition. 
Take h h( , ) ( ), , *ν ν νξ ζ ρ

1
0

2
0

1 2
0≤  where ν π µα ξ

α
1
0

0= , ( ) . 
Take � � ∈νβ

1
11 S , so there's ξ κ<  such that µ π νξ

α
β α

β=
1

1
1, ( ) . Assume 

σ ν ν β ν νβ β|| { , , , , , , , , , , , , }* *q f f h h S F H∪ � � � � ′ ′ � � ′ ′ �� � ′ � � ′ ′ ′� ≤′ ′0 0
0

1
0

0 1 0 1 0 1  
( ) { , , , ( ), , ( ), ( ) ,

,
* *p f F h hu u

1 0
0

1
0

0
1

0 1
0

1
0

1 1
1

1
10

� � �� � �
∪ � � � � � � ��

β ν ξ
α

νβ βν ν µ ν ν  

� � � �
� � � � � �

β ν νβ β
ν ν νβ β1 0 1

1 1 11 1

1
1

1
1

1
0, , , , , }S F H  

By definition we have ′ ≤f f u
0 0

*
( )µξ

α , ′ ≤h hu
0 0 1
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With this we finished with the 1st level. 
 
We'll continue into the higher levels. As the proof for the 2nd level is a degenerate 
version of the higher levels we'll show how to continue with the 3rd level. So we're 
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Let's go into the 3rd level. 
We'll well order S 2 2|[ ]κ  such that � � � � � ≤ν ν ν ν ν ν0 1 0 2 1 1 1 2 0 2

0
1 2
0

, , , , , ,, ,p . 
Set � � =µ µ κβ β

0 1 0 2
2 22 2

, ,, min |[ ]p S . Consider the condition 

( ) { , , , ,
, , , ,

, ,
p2 0

0
0 1
0

0 2
0

2 0 1
2

0 2
2 0

� � ��
∪ � � �

β µ µβ β ν µ µ  

� �
� � � �

f F Fu
0 0 1

2
0 2

2
2

2

0 1
2

2

0 1
2

0 2
2

*
, , , ,

( ), ( ), ,
, , ,

oπ µ µβ α
β

µ
β

µ µβ β β  

� ��
� � � �

h H Hu
0 0 1

0 2
0 2
0 2

0 1
0

0 1
0

0 2
0

*
, , ,

( ), ( ), ,
, , ,

µ µµ µ µ  

� � �β ν µ µβ β β
2 0 0 1 0 2

2 2 2, , , ,, , S F H
� � � � � �

�
µ µ µ µ µ µβ β β β

0 1
2

0 2
2

0 1
2

0 2
2

0 1
0

0 2
0

2 2 2

, , , , , ,, , ,
, , } 
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Suppose now that 
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By definition we have  
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By construction of S 3  there's ξ κ<  such that π ν ν µ µβ β
β β

ξ
β

ξ
β

3 2
3 3 2 2

1 2 1 2, ( , ) ,, ,� � = � �  hence we 
have 

σ ν µ µ νξ ξ|| { , , , , , , , , , , , , ,, ,
* *q f f f f h h h h∪ � � � � ′ ′ ′ ′ � � ′ ′ ′ ′ ��0 0

0
1

0
2

0
3
0

0 1 2 3 0 1 2 3  

� ′ � � ′ ′ ′� ≤′ ′ ′ ′β ν ν ν νβ β β β, , , , , , , }0 1 2 3 S F H  
( ) { , , , , ,

, , , , ,p3 0
0

1
0

2
0

3
0

3 1
3

2
3

3
3 0

� � ��
∪ � � �

β ν ν ν ξ ξβ β β ν µ µ ν  

� �
� � � �

f F F Fu
0 1

2
2

3
3

3
2

2

1
2

2 3

3
3

*
, , ,

, ,( ), ( ), ( ), ,
,

oπ µ µ νβ α ξ
β

µ ξ
β ξ β

ν
ξ

ξ
β β  

� ��
� � � �

h H H Hu
0 1

0 2
2

0 3
3
0 3

1
0

3
0

*
, ,

, ,( ), ( ), ( ), ,
,

µ µ νξ µ ξ
ξ

ν
ξ

ξ
 

� � �β ν ν ν νβ β β β
3 0 1 2 3

3 3 3 3, , , , , S F H
� � � � � �

� ≤
ν
ξ

ν
ξ

ν
ξ

β β
3

3
3

3
3
0

3 3 3, , ,, , }  



Possible values for 2ℵn  and 2ℵω  

-42- 

( ) { , , , ,, , , , ,
, ,

p3 0
0

1
0

2
0

2 1
2

2
2 0ξ β µ µ ξ ξ

ξ
β

ξ
β ν µ µ

� � ��
∪ � � �  

� �
� � � �

f F Fu
0 1

2
2

2
2

2

1
2

2

1
2

2
2 2

*
, , , , ,( ), ( ), ,

, , ,
o oπ µ µ πβ α ξ

β
µ ξ

β
µ µ γ β

ξ
β

ξ
β

ξ
β ξ

 

� ��
� � � �

h H Hu
0 1

0 2
2

0 2

1
0

1
0

2
0

*
, , ,

( ), ( ), ,
, , ,

µ µξ µ ξ µ µξ ξ ξ
 

� � �γ ν µ µξ
γ

ξ
γ

ξ
γξ ξ ξ, , , ,, ,0 1 2 S F H3 3 3, , ,, , }ξ ξ ξ �  
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After working on all levels we'll have < < >p S F H nn n
n n n, , , , |β ω . We combine it all 

into one condition by setting 
 p pn
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Lemma 4.24.2: There are p* , β*, S*, F *, H * such that 
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and such that if 
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Back in V  take f1, f2 , h1  such that 
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κ 2
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We'll see what we gained with the condition 
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{ , , , , ( ), ( , ), ( , )( ) ,*� � � � ′′ ′′ − �0 0
0

1
0

2
0

0 1
0

1 2
0

1 2ν ν ν ν ν ν ν νf F F  
� ′′ ′′ − ��

� �
h H H0 1

0 0
1
0

2
0 0

1
0

2
0

*
,

( ), ( , ), ( ) ,ν ν ν ν ν  

� � ��β ν π ν π νβ
δ β δ β, , ( ), ( ) ,, ,0 1 2  

� � � ′′ ′′ ′′ � −� � � � � �
δ ν ν ν σδ

ν ν ν ν ν ν, , , , , , }|| }, , ,0 1 2
0 0 0
1 2 1 2 1

0
2
0S F H  

 
B S1 1 2

0= < >∈{ , |ν ν ( ) , ,p � � �� ∪δ ν ν1 2
 

{ , , , , ( ), ( , ), ( , )( ) ,*� � � � ′′ ′′ − �0 0
0

1
0

2
0

0 1
0

1 2
0

1 2ν ν ν ν ν ν ν νf F F  
� ′′ ′′ − ��

� �
h H H0 1

0 0
1
0

2
0 0

1
0

2
0

*
,

( ), ( , ), ( ) ,ν ν ν ν ν  

� � ��β ν π ν π νβ
γ β γ β, , ( ), ( ) ,, ,0 1 2  

� � � ′′ ′′ ′′ � −¬� � � � � �
δ ν ν ν σδ

ν ν ν ν ν ν, , , , , , }|| }, , ,0 1 2
0 0 0
1 2 1 2 1

0
2
0S F H  

Take i ∈2  such that B Ui ∈ δ
2  and restrict ′′S 0  to Bi . By definition we get 
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σ|| p ∪{ , , ,*� � � � �0 0
0

0ν f � �h0
* ,� � ��β νβ, ,0 � � � ′′ ′′ ′′ � ≤δ νδ, , , , } *

0
0 0 0S F H  

p ∪{ , , ,*� � � � �0 0
0

0ν f u < >hu
0

* , � � �β νβ, ,0 S F H, , }>  
as needed. 
 
We'll sketch how to continue into the next level. 
 
In M2  define for each � �∈ν ν1 2

0, S  
′ = � �� �D f j f hν ν γ

1 2 3 2 3 4 3, ,
*{ , ( )( ), | 

∃� � ≤ � �� �f f f f F j Fu
0 1 2 0 1

0
1 2 2

0 0
0

1 2
, , ( ), ( , ), ( )( )

*

, ,oπ ν ν ν ββ α ν ν  

∃� � ≤ � �
� �

h h h h H j Hu
0 1 2 0 1

0 0
1
0

2
0

2
0

1
0

2
0, , ( ), ( , ), ( )( )*

,
ν ν ν κν ν  

f j F j f j j F3 2
0 0

1
0

2 3 4 2 3 2
0

2
0

1 2 1 2
0

1
0≤ ≤� � � � � �

( )( , ) ( )( ) ( ( ) )( ), ,
*

, , ,ν ν ν ν β ββ β γ β  

h j H1 2
0

1
1
0

2
0≤

� �
( )( , )

,ν ν κ κ   ∀ ′ ≥γ γ  
( ( ))

, , , ,
j p2

2
0

1 2
0

1
0� � ��

∪β ν ν β β  

{ ( ), , , , , , , , , , ,*
,� � � � �′j f f f f f2 0

0
1
0

2
0

1 0 1 2 3 40 ν ν ν κ κ πγ γo  

� − ��
� � � �h h h j H0 1 2 2
0

1
0

2
0

1
, , ( ) ( ) ,, , ,ν ν κ κ  

� � ��β ν π ν π ν β ββ
β β β β2 0 1 2 1

2
0

2 2
0

2
, , ( ), ( ), ,

, ,
 

� � ��β ν ν ν β ββ
2
0

0 1 2
0

1
0, , , , ,  

� ′ � �′ ′ ′ ′ ′
′

−
� � � �

γ ν ν ν ν ν πγ γ γ γ γ
γ β ν ν β β, , , , , , ( ) ( ) ,

, , ,0 1 2 3 4 2
1

2
0

2
0

1 2
0

1
0j j S  

j F j j H j2
0

2 2
0

21 2
0

1
0

2
0

1
0

2
0

1
( ) ( ) , ( ) }|| ( )}, , , , ,� � � � ′ � � � � >ν ν β β γ β ν ν κ κπ σo  

D f f h f f h D� � � �= � � � � ∈ ′ ∨ν ν ν ν1 2 1 23 4 3 3 4 3, ,{ , , | , ,  
∀� ′ ′ ′�∈ ′ � ′ ′ ′� /≤ � �� �f f h D f f h f f h3 4 3 3 4 3 3 4 31 2

, , , , , , },ν ν  
 
Back in V  take f3

1 2� �ν ν, , f4
1 2� �ν ν, , h3

1 2� �ν ν,  such that 
� � ≥� � � � � �

j F j F j H2
0 0

1
0

3
0 0

1
0

2
0

2
0

11 2 1 2 1
0

2
0( )( , ), ( )( , , ), ( )( , ), , ,ν ν ν ν ν νβ β β β β κ κ  

� >∈ ∩� � � � � �
� �f f h D G3 4 3 3

1 2 1 2 1 2

1 2

ν ν ν ν ν ν
ν ν

, , ,
,, ,  

which is possible since 
 � �∈� � � � � �

j F j F j H G2
0 0

1
0

3
0 0

1
0

2
0

2
0

1 31 2 1 2 1
0

2
0( )( , ), ( )( , , ), ( )( , ), , ,ν ν ν ν ν νβ β β β β κ κ . 

Now take appropriate β1, �� 21 ,
3

~ ννf , �� 21 ,
4

~ ννf , �� 21 ,
3

~ ννh  such that  

),)(
~

( 1
1

1,
32

,
3

2121 ββνννν ���� = fjf ,  

),)(
~

( 1
2

1
1

,
43

,
4

2121 ββνννν ���� = fjf ,   

),)(
~

( 1
,

32
,

3
2121 κκνννν ���� = hjh  

 where β βn nj
1 1= ( ) . We can take one such β1 for all � �∈ν ν1 2

0, S  due to the κ +  
directness of our extender.  
Let ′ = −S S1 1 0

1 0πβ β, . 

′ =F F1
1 2

0
1 21 0( , ) ( , )

,
ν ν π ν νβ βo  

′ =F F1
1 2 3

0
1 2 31 0( , , ) ( , , )

,
ν ν ν π ν ν νβ βo  

),(
~

),,,( 43
,

34321
1 21 νννννν νν ��=′ fF  
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~

),,,,( 54
,

454321
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1 2 3 4 5

0
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ν ν ν ν ν π ν ν ν ν νβ βK o K  
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1
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2
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1
0

2
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1
0

2
0

3
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1
0

2
0

3
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~
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4

0
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0
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0
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0
1
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1
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3
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1
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3
0

4
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A S0 3 4

1 21 2

1 2

� �
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ν νν ν κ,

,{ , |[ ] | 
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1
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1
3

1
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*
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*
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� � � �
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1
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2
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3
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3
0

4
0

1
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2
0

1
0

2
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p
� � ��

∪β ν π ν π ν π ν π νβ
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{ , , , , , ,< < >0 0
0

1
0

2
0

3
0

4
0ν ν ν ν ν � �′f f f f f0 1 2 3 4, , , , ,*

,oπγ γ  

� ′ − �� �h h h h H0 1 2 3
1
1 2 3 4

, , , , ( ) ,, , ,ν ν ν ν  

� � ��β ν π ν π ν π ν π νβ
β β β β β β β β, , ( ), ( ), ( ), ( )

, , , ,0 1 2 3 41 1 1 1 , 

� � ��β ν π ν π ν π ν π νβ
β β β β β β β β

0
0 1 2 3 4

0

1 0 1 0 1 0 1 0, , ( ), ( ), ( ), ( )
, , , ,

, 

� ′ � �′ ′ ′ ′ ′γ ν ν ν ν νγ γ γ γ γ, , , , , ,0 1 2 3 4  
π π σγ β ν ν ν ν ν ν ν ν γ β ν ν ν ν′

−
� � � � ′ � �
′ ′ ′ �

, , , , , , , , , , ,
, , }|| }1

1 2 3 4 1 2 3 4
1

1
0

2
0

3
0

4
0

1 1 1 1S F Ho  

A S A1
1 2

0
1 2

1 2

1 2� �
� �

� �= ′ −ν ν
ν ν

ν νκ,
,

,|[ ]  
Set S S Ai� � � �

� �= ′ν ν ν ν
ν ν

1 2 1 2

1 21 1
, ,

,|  where A Ui
� � ∈ν ν

β
1 2

1
2, ., and let F F S� � � � � �= ′ν ν ν ν ν ν1 2 1 2 1 2

1 1 1
, , ,| , 

H H S
� � � � � �= ′ν ν ν ν β ν νπ

1
0

2
0

1
0

2
0 1

1 2

1 1
0

1
, , , ,| . 

 
The new condition is 

p f hu u∪ � � � � � � ��{ , , , ,*
,

*0 0
0

0 01ν πβ αo  

� � �� � � ��β ν β νβ β, , , ,0
0

0

0

 
� � � �β νβ1

0
1 1 11

, , , , }S F H  

and by working on all levels the lemma is proved.�  

 

Let G P⊆  be a generic filter. As P has the κ ++ -c.c. all the cardinals ≥ ++κ  remain 

cardinals in V G[ ]. We show know that κ +  is also preserved. 

Claim 4.25: κ +  remains a cardinal in V G[ ]. 
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Proof: Suppose κ +  had been collapsed. As cfV G[ ]κ ω=  we must have that 

cfV G[ ]κ µ κ+ = < . Let ′ −p || “ +→ κµ ˆˆ:~g  an unbounded function” in V G[ ]. Take p p≤ ′  

such that max p0 > µ . Using the same method as in the first sub-lemma of the Prikry 

condition proof, there's 

q p f f h h q S F H pp p
p

p p
0

0
0 0

0 0 00
0

0∪ � � � � ≤{ , , , , , , , , , , }*
, ( )

* *oπ αα
α

mc  

 such that if there's ζ κ< + , r  such that 

ζ̂)0̂(~ =g − ≤ ∪ � � � �|| { , , , , , , , , , , }
*

, ( )

*
r q p f h q S f F h Hp p p

p
p

0
0

0 0
0 0 00 0

0
α πα

αo mc  

 then ∃ ′′ ≤f f r* * , such that 

( )
,

q
r0

0� �
∪α α { , , , , , ( ) ,*� ′′ − �

−
0 0 0

0
0
0r f f h Hr r

r q
 

� �
− −

mc mc
mc
-1

mc( ), , , , }( ), ( ),r r S F Hr r q r r q
π πα αα α

0 0
0

0 0
0

0
0

0 0 0o ζ̂)0̂(~|| =−g . 

Now, assume we have λ µ<  and  

� ∪ � � � � < �q p f f h h q S F Hp p
p

p p
ξ α ξ ξ

α ξ ξ ξπ α ξ λ
ξ

ξ{ , , , , , , , , , , } |*
, ( )

*0 0 o mc  

Choose q p f f h h q S F Hp p
p

p p
λ α λ λ

α λ λ λπ α
λ

λ∪ � � � �{ , , , , , , , , , , }*
, ( )

*0 0 o mc  which is ≤* 

from all these satisfying the same thing for )ˆ(~ λg . After finishing the induction we 

have 

{ { , , , , , , , , , , } |*
, ( )

*q p f f h h q S F Hp p
p

p p
ξ α ξ ξ

α ξ ξ ξπ α ξ µ
ξ

ξ∪ � � � � < �0 0 o mc  

Take q p f f h h q S F Hp p
p

p p∪ � � � �{ , , , , , , , , , , }*
, ( )

*0 0 oπ αα
α

mc  which is ≤* from all 

these. Suppose now that there are r , ξ µ< , ζ κ< +  such that 

},,,,,,,,,0{||ˆ)ˆ(~ *
)(mc,

*0 ����∪≤−= HFSqhffpqrg p
p

pp α
α απζξ �  

then 

 

},,,,,,,,,,0{||ˆ)ˆ(~ *
)(mc,

*0 ����∪≤−= ξξξα
ξξαξ

ξ

ξ
απζξ HFSqhhffpqrg pp

p
pp
�  

so from the construction we have ′′ ≤f f r* * such that 
( )

,
q

rξ αξ
αξ� �

∪ { , , , , , ( ) ,*� ′′ − �
−

0 0
0 0r f f h Hr r

r qξ

ξ  

� �
− −

mc mc
mc
-1

mc( ), , , ,( ), ( ),r r S F Hr r q r r q
π πα

ξ ξ
α

ξ
ξ αξ

ξ
αξ ξ ξ

o 0 0 ζξ ˆ)ˆ(~|| =−g  

from which we get that 
( )

,
q

rα α ∪ { , , , , , ( ) ,*� ′′ − �
−

0 0
0 0r f f h Hr r

r q
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� �
− −

mc mc
mc
-1

mc( ), , , , }( ), ( ),r r S F Hr r q r r q
π πα αα α o 0 0 ζξ ˆ)ˆ(~|| =−g  

This means that the value of )ˆ(~ ξg  is decided by condition of this form. However, 

condition of this form can force at most κ  different values and so these values are 

bounded in κ + . This it true for all ξ µ<  and as µ κ<  we get that ][~ Gg  is bounded in 

κ + . Contradiction.�  

 

Let � < � = ∈τ ωn n p p G| { | }U 0 . Denseness arguments give us that this sequence is 

unbounded, that ∀ <n ω  the cardinals between τn
b n+ +( ) 1 and τn+1 are collapsed and that 

∀ < <0 n ω  τn
+  is collapsed. 4.19 shows that the other cardinals aren't collapsed and so 

κ  remains a cardinal also. Denseness argument show that 2τ τn
k

n e n k
d n k+

= +
+

( , )
( , )  and because 

τn
+  is collapsed for n > 1 we get in fact 2 1

1τ τn
n e n

d n= +
+

( , )
( , ) . Another denseness argument will 

show that ( ) [ ]2κ κV G
m≥ + . Noting that V G[ ]|= “2κ ωκ= ” and using the same technique 

used to show that κ +  isn't collapsed we get that ( ) | |[ ]2κ κV G
mP≤ = +  we get that 

( ) [ ]2κ κV G
m= + . We finish the proof by forcing in V G[ ] with Col( , )ℵ +

0 0τ . 
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