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Abstract. The extender based forcing of Gitik and Magidor is generalized to
yield, given any extender j : V → M with critical point κ, a cardinal preserving
generic extension with no new bounded subset of κ in which cf(κ) = ω and
κω = |j(κ)|.

Assuming a superstrong cardinal exists, the forcing notion is used to con-
struct a model in which the added Prikry sequences are a scale in the normal
Prikry sequence.

In addition, several ways to produce generic filter over an iterated ultra-
power are presented.

1. Introduction

In [5] an extender based forcing notion was introduced which yields a cardinal
preserving generic extension with no new bounded subset of κ in which cf(κ) = ω
and κω = λ for some λ < j(κ), given an extender j : V → M with critical point κ.
In the case that sup{j(f)(κ) | f :κ → κ} < λ < j(κ) this construction required a
preliminary forcing to add a function f :κ → κ such that j(f)(κ) > λ.

In this work we present a modification of the above mentioned forcing which
eliminates the requirement for a function f such that λ < j(f)(κ). We use this
forcing to construct from a superstrong extender j :V → M a model satisfying
2κ = j(κ), and having a Prikry sequence Gκ in κ together with a scale 〈Gλ | λ <
j(κ)〉 in

∏
Gκ/D, such that tcf(

∏
Gλ/D) = λ for each regular λ < j(κ), where D

is the cofinite filter on ω.
In order to show this we calculate the tcf of the added Prikry sequences. This

calculation builds on Sharon’s calculation [10] of the tcf of the sequences added
in the forcing of [5], which in turn followed on the calculation in [6] of the tcf of
sequences in Prikry’s original forcing [9], and in the model of Magidor [8].

In [3, 1] it was shown how to construct, working inside V , a generic filter for
the Prikry forcing over an iterated ultrapower of V . In [2] it was shown how to
construct, working inside V , a generic filter for the Radin forcing over an iterated
ultrapower of V . In [7] the sequences generated along the ω-iterations, and their
relation to the extender based forcing were considered. Along these lines we have
tried to construct, working in V , a generic filter for the extender based forcing over
the ω-iterated ultrapower of V . To get a full result we had to use either some form
of supercompactness or to Cohen blow-up the power of κ+.
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The structure of this work is as follows: In section 2 we give some basic definitions
used in later sections (e.g., extenders, trees). In section 3 a detailed presentation
of the forcing notion is given. This section culminates with the theorem

Theorem (3.32). Assume GCH, j : V → M ⊃ Mκ and crit(j) = κ. Then there is
cardinal preserving generic extension in which κω = |j(κ)|, cf κ = ω, and there are
no new bounded subsets of κ.

In section 4 we start from a superstrong cardinal and get the following.

Theorem (4.15). Assume GCH, j : V → M ⊃ Mκ, M ⊃ Vj(κ) and crit j = κ.
Then there is a cardinal preserving generic extension in which cf κ = ω, κω = j(κ),
and such that there is a Prikry sequence Gκ in κ and a scale 〈Gλ | λ < j(κ)〉
of length j(κ) in

∏
Gκ/D such that tcf(

∏
Gλ/D) = λ for each regular cardinal

λ < j(κ).

In section 5 we show several ways (mainly because we do not know the ‘right’
way, if it exists at all) to generate a generic filter in V over the ω iterate of V .

This work is largely self contained, however knowledge of [5] will make it much
easier. The notation we use is standard. We assume fluency with forcing, large
cardinals, extenders, and some basic pcf theory.

2. Preliminaries

2.1. Elementary embeddings and Extenders. The extenders we use here were
used in [5] where they were called nice system. A simplification appears in [4].

Definition 2.1. Let j :V → M be an elementary embedding and crit(j) = κ.
(1) The generators1 of j are defined by induction as

κ0 = crit(j),

κξ = min{λ ∈ On | ∀ξ′ < ξ ∀µ ∈ On ∀f :µ → On j(f)(κξ′) 6= λ}.
If the induction terminates, then we have a set of generators for j:

g(j) = {κξ | ξ < ξ∗}.
(2) For α, β ∈ On we say α <j β if

(a) α < β.
(b) There are µ ∈ On and f : µ → On such that j(f)(β) = α.

(3) Assume α ∈ On and λ ∈ On is minimal such that j(λ) > α. We set

E(α) = {A ⊆ λ | α ∈ j(A)}.
It is well know that E(α) is a κ-complete ultrafilter over λ.

Definition 2.2. Let j :V → M ⊃ Mκ be an elementary embedding such that
crit(j) = κ and g(j) ⊂ j(κ). The extender E derived from j is the system

E = 〈〈E(α) | α ∈ j(κ) \ κ〉, 〈πβ,α | α, β ∈ j(κ) \ κ, α <j β〉〉.
where

(1) E(α) = {A ⊆ κ | α ∈ j(A)}.
1The definition of generators differs slightly from the usual one since we use only one ordinal

to index our extenders.



PRIKRY ON EXTENDERS, REVISITED 3

(2) For α, β ∈ j(κ) \ κ such that α <j β the function πβ,α : κ → κ is such that
j(πβ,α)(β) = α. (Note that α <j β means there are many such functions.
Any one of them will do as πβ,α.)

We assume that it is known how to reconstruct j from E, i.e., j is the natural
embedding j :V → Ult(V,E). We will use <E and dom E as synonyms for <j and
j(κ) \ κ respectively.

Claim 2.3. Assume j :V → M ⊇ Mκ, crit(j) = κ and g(j) ⊆ j(κ). Then <j ¹ j(κ)
is κ+-directed.

Proof. Let X ∈ [j(κ)]≤κ. We need to find β < j(κ) such that ∀α ∈ X β >j α.
Let us fix a function e : κ onto−−−→ [κ]<κ such that for each A ∈ [κ]<κ, e−1A is

unbounded in κ. Of course, j(e) : j(κ) onto−−−→ ([j(κ)]<j(κ))M .
Let µ = sup X. Since X ∈ M we get µ < j(κ). Since X ∈ ([j(κ)]<j(κ))M there

are β ≥ µ and a function g such that j(e)(β) = X and j(g)(β) = j′′ ot(X). We
show that β≥j α for all α ∈ X. So, let α ∈ X.

We let ξ = ot(X∩α). Then we set ∀ν < κ gξ(ν) = ot(g(ν)∩ξ). Thus j(gξ)(β) =
ot(j(g)(β)∩ j(ξ)) = ot(j′′ ot(X)∩ j(ξ)) = ξ. We set ∀ν < κ f(ν) = min{γ ∈ e(ν) |
ot(e(ν) ∩ γ) = gξ(ν))}. Then j(f)(β) = min{γ ∈ X | ot(X ∩ γ) = ξ} = α. ¤

In this paper we use only elementary embeddings with a set of generators. (I.e.,
g(j) is bounded by some ordinal). Hence an elementary embedding j is definable
from a set parameter, so terms of the forms j(j) have definite meaning. We as-
sume the theory of iterating elementary embeddings is known and give the basic
definitions and propositions we need in order to get to the ω-iterate of V .

Definition 2.4. Assume j : V → M is an elementary embedding. We define by
induction for each n < ω

j0,1 = j, M0 = V,

jn+1,n+2 = j(jn,n+1) : Mn+1 → Mn+2.

We ‘complete’ the list of j’s by setting ∀n < m < ω

jn,n = id,

jn,m = jm−1,m ◦ · · · ◦ jn,n+1,

jn = j0,n.

Proposition 2.5. Assume j :V → M ⊃ Mκ, crit(j) = κ, g(j) ⊂ j(κ), 0 < n < ω
and τ ∈ jn(j(κ) \ κ). Then there is τ∗ ∈ j(κ) such that jn(τ∗) >jn,n+1 τ .

Proof. The proof is done by induction on n.
• n = 1: We choose f :κ → j(κ) and α ∈ j(κ)\κ such that j(f)(α) = τ . Since

<j ¹ j(κ) is κ+-directed, there is τ∗ ∈ j(κ) such that ∀ν < κ τ∗>j f(ν).
Hence j(τ∗) >j1,2 j(f)(α) = τ .

• n > 1: Assume τ ∈ jn(j(κ)\κ) Since jn−1,n(jn(κ)\jn−1(κ)) = jn(j(κ)\κ),
we get τ ∈ jn−1,n(jn(κ)\jn−1(κ)). By the case n = 1 applied in Mn−1 there
is τ ′∗ ∈ jn(κ) such that jn−1,n(τ ′∗) >jn,n+1 τ . By the induction hypothesis,
there is τ∗ ∈ j(κ) such that jn−1(τ∗) >jn−1,n τ ′∗. So

jn(τ∗) = jn−1,n(jn−1(τ∗)) >jn,n+1 jn−1,n(τ ′∗) >jn,n+1 τ.

¤
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Corollary 2.6. Assume j :V → M ⊃ Mκ, crit(j) = κ, g(j) ⊂ j(κ), n <
ω and x ∈ Mn. Then there are f :[κ]n → V and α ∈ j(κ) such that x =
jn(f)(α, j(α), . . . , jn−1(α)).

2.2. Trees and U-trees.

Definition 2.7. [κ]<ω = {〈ν0, . . . , νk〉 | k < ω, ν0 < · · · < νk < κ} .

Definition 2.8. A set T ⊆ [κ]<ω ordered by end-extension and closed under initial
segments is called a tree.

Definition 2.9. Assume T ⊆ [κ]<ω is a tree. Then for each k < ω

(1) ∀〈ν0, . . . , νk〉 ∈ T SucT (ν0, . . . , νk) = {ν < κ | 〈ν0, . . . , νk, ν〉 ∈ T}.
(2) Levk(T ) = T ∩ [κ]k+1.

Definition 2.10. Assume T ⊆ [κ]<ω is a tree, k < ω and 〈ν0, . . . , νk−1〉 ∈ T . Then

T〈ν0,...,νk−1〉 = {〈νk, . . . , νn〉 ∈ [κ]<ω | 〈ν0, . . . , νk−1, νk, . . . , νn〉 ∈ T}.
Note the degenerate case T〈〉 = T .

Definition 2.11. Assume T ⊆ [κ]<ω is a tree, k < ω and A ⊆ [κ]k+1 . Then

T ¹ A = {〈ν0, . . . , νn〉 ∈ T | n < ω, 〈ν0, . . . , νk〉 ∈ A}.
Definition 2.12. Assume T ⊆ [κ]<ω is a tree and π : κ → κ. Then

π−1(T ) = {〈ν0, . . . , νk〉 ∈ [κ]<ω | k < ω, 〈π(ν0), . . . , π(νk)〉 ∈ T}.
Definition 2.13. Let F be a function such that domF ⊆ [κ]<ω is a tree, k < ω
and 〈ν0, . . . , νk−1〉 ∈ domF . Then F〈ν0,...,νk−1〉 is the function defined as follows:

(1) dom(F〈ν0,...,νk−1〉) = (dom F )〈ν0,...,νk−1〉.
(2) F〈ν0,...,νk−1〉(νk, . . . , νn) = F (ν0, . . . , νk−1, νk, . . . , νn).

Note the degenerate case F〈〉 = F .

Definition 2.14. Let F be a function such that dom F ⊆ [κ]<ω is a tree and
π : κ → κ. Then π−1(F ) is the function defined as follows:

(1) dom π−1(F ) = π−1(dom F ).
(2) ∀〈ν0, . . . , νk〉 ∈ domπ−1(F ) (π−1(F ))(ν0, . . . , νk) = F (π(ν0), . . . , π(νk)).

From now until the end of the section we assume U is a κ-complete ultrafilter
on κ.

Definition 2.15. A tree T ⊆ [κ]<ω is a U -tree if
(1) Lev0(T ) ∈ U .
(2) ∀k < ω ∀〈ν0, . . . , νk〉 ∈ T SucT (ν0, . . . , νk) ∈ U .

We recall the definition of filter product in order to define powers of U .

Definition 2.16. We define powers of U by induction as follows:
(1) For k = 1: U1 = U .
(2) For 1 < k < ω: ∀A ⊆ [κ]k, A ∈ Uk ⇐⇒
{〈ν0, . . . , νk−2〉 ∈ [κ]k−1 |

{νk−1 ∈ κ | 〈ν0, . . . , νk−2, νk−1〉 ∈ A} ∈ U} ∈ Uk−1.
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Note that we identify κ with [κ]1 in this definition. Recall that Uk is a κ-complete
ultrafilter on [κ]k.

The following is straightforward.

Proposition 2.17. Assume T ⊆ [κ]<ω and T ξ ⊆ [κ]<ω are U -trees for each ξ < ζ,
where ζ < κ. Then

(1) ∀k < ω Levk(T ) ∈ Uk+1.
(2) ∀k < ω ∀〈ν0, . . . , νk−1〉 ∈ T T〈ν0,...,νk−1〉 is a U -tree.
(3) ∀k < ω (A ∈ Uk+1 =⇒ T ¹ A is a U -tree).
(4)

⋂
ξ<ζ T ξ is a U -tree.

3. PE-Forcing

In this section we give a detailed presentation of the Prikry on extender forcing
notion. We assume the existence of an elementary embedding j :V → M ⊃ Mκ

such that j(κ) ⊃ g(j) and crit(j) = κ. We assume the GCH. Let E be the extender
derived from j. Recall dom E = j(κ) \ κ.

Definition 3.1. Assume d ⊆ domE and |d| ≤ κ. Then

mc(d) = min{α ∈ dom E | ∀β ∈ d α≥E β}.
Note that there is h : κ → κ such that j(h)(mc(d)) = j′′d.

Definition 3.2. We define the forcing notion P∗E as follows.

P∗E = {f : d → [κ]<ω | d ⊆ domE, |d| ≤ κ, κ ∈ d, mc(d) ∈ d}.
The partial order ≤∗ on P∗E is defined by: f ≤∗ g ⇐⇒ f ⊇ g. (Note that P∗E is
the Cohen forcing for adding |j(κ)| subsets to κ+.)

Definition 3.3. Assume f ∈ P∗E . Then mc(f) = mc(dom f).

The Prikry on extender forcing is defined as follows.

Definition 3.4. A condition p in PE is of the form 〈f, F 〉 where
(1) f ∈ P∗E .
(2) F : T → [dom f ]<κ is such that for each k < ω

(a) T is an E(mc(f))-tree.
(b) ∀〈ν0, . . . , νk−1〉 ∈ T j(F〈ν0,...,νk−1〉)(mc(f)) = j′′ dom f .
(c) ∀〈ν0, . . . , νk−1, ν〉 ∈ T κ ∈ F〈ν0,...,νk−1〉(ν).
(d) ∀〈ν0, . . . , νk−1, ν〉 ∈ T

(|F〈ν0,...,νk−1〉(ν)| ≤ πmc(f),κ(ν)
)
.

(e) ∀〈ν0, . . . , νk−1, νk〉 ∈ T
(
F (ν0, . . . , νk−1) ⊆ F (ν0, . . . , νk−1, νk)

)
.

(f) ∀β ∈ dom f ∀〈ν0, . . . , νk〉 ∈ T

f(β) _〈πmc(f),β(νi) | i ≤ k, β ∈ F (ν0, . . . , νi)〉 ∈ [κ]<ω.

(Recall that [κ]<ω is the set of finite increasing sequences in κ).
We write supp p, mc(p), fp, F p, and dom p, for dom f , mc(f), f , F , and T , respec-
tively.

Proposition 3.5. Assume 〈f, F 〉 satisfy (1), (2a), and (2b) of definition 3.4, then
there is a function F ∗ such that F ¹ dom F ∗ = F ∗ and 〈f, F ∗〉 ∈ PE.
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Proof. We fix demands (2c), (2d) and (2f) as follows. We note that for each n < ω
and 〈ν0, . . . , νn−1〉 ∈ domF ,

j(F〈ν0,...,νn−1〉)(mc(f)) = j′′ dom f,

j(κ) ∈ j′′ dom f,

|j′′ dom f | ≤ κ,

and

∀β ∈ j′′ dom f
(
max j(f)(β) < j(π)j(mc(f)),β(mc(f))

)
.

ÃLoś theorem yields that for each n < ω and 〈ν0, . . . , νn−1〉 ∈ dom F ,

{νn−1 < ν < κ | κ ∈ F〈ν0,...,νn−1〉(ν), |F〈ν0,...,νn−1〉)(ν)| ≤ πmc(f),κ(ν),

∀β ∈ F〈ν0,...,νn−1〉(ν)
(
max f(β) < πmc(f),β(ν)

)} ∈ E(mc(f)).

So we shrink domF to these sets, working up dom F level by level. Thus we get
for each n < ω and 〈ν0, . . . , νn−1, ν〉 ∈ domF ,

κ ∈ F〈ν0,...,νn−1〉)(ν),

|F〈ν0,...,νn−1〉)(ν)| ≤ πmc(f),κ(ν),

and

∀β ∈ F〈ν0,...,νn−1〉(ν)
(
max f(β) < πmc(f),β(ν)

)
.

Demand (2e) is fixed by taking unions along branches. That is for each n < ω, and
〈ν0, . . . , νn〉 ∈ domF we set

F ∗(ν0, . . . , νn) =
⋃

k≤n

F (ν0, . . . , νk).

Thus 〈f, F ∗〉 ∈ PE . ¤

Definition 3.6. Let p, q ∈ PE . We say that p is a Prikry extension of q (p ≤∗ q) if
(1) supp p ⊇ supp q.
(2) fp ¹ supp q = fq.
(3) dom p ⊆ π−1

mc(p),mc(q)(dom q).
(4) ∀k > 0 ∀〈ν0, . . . , νk−1, ν〉 ∈ dom p ∀β ∈ (π−1

mc(p),mc(q)(F
q))(ν0, . . . , νk−1, ν)

πmc(p),β(ν) = πmc(q),β(πmc(p),mc(q)(ν)).

(5) ∀k > 0 ∀〈ν0, . . . , νk〉 ∈ dom p

F p(ν0, . . . , νk) ⊇ (π−1
mc(p),mc(q)(F

q))(ν0, . . . , νk),

and

F p(ν0, . . . , νk) \ (π−1
mc(p),mc(q)(F

q))(ν0, . . . , νk) ⊆ supp p \ supp q.

Definition 3.7. Let q ∈ PE and 〈ν〉 ∈ dom q. We define q〈ν〉 ∈ PE to be p where
(1) supp p = supp q.

(2) ∀β ∈ supp p fp(β) =

{
fq(β) _〈πmc(q),β(ν)〉 if β ∈ F q(ν).
fq(β) if β /∈ F q(ν).

(3) F p = F q
〈ν〉.
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For k > 0 we define q〈ν0,...,νk〉 recursively, setting q〈ν0,...,νk〉 = (q〈ν0,...,νk−1〉)〈νk〉.

Definition 3.8. Let p, q ∈ PE . We say that p is a 1-point extension of q (p ≤1 q)
if there is 〈ν〉 ∈ dom q such that p ≤∗ q〈ν〉.

Definition 3.9. Let p, q ∈ PE and n < ω. We say that p is an n-point extension
of q (p ≤n q) if there are pn, . . . , p0 such that

p = pn ≤1 · · · ≤1 p0 = q.

Definition 3.10. Let p, q ∈ PE . We say that p is an extension of q (p ≤ q) if there
is an n < ω such that p ≤n q.

Thus we have the forcing notions PE = 〈PE ,≤〉 and P∗E = 〈P∗E ,≤∗〉.
The following is immediate from the definition of the forcing notion.

Claim 3.11. Let p, q ∈ PE be such that p ≤ q. Then there are k < ω and
〈ν0, . . . , νk−1〉 ∈ dom q such that p ≤∗ q〈ν0,...,νk−1〉.

Definition 3.12. Let G be PE-generic. Then

∀α ∈ domE Gα =
⋃
{fp(α) | p ∈ G, α ∈ supp p}.

We write G
e

α for the PE-name of Gα.

Given a condition 〈f, F 〉 and g ≤∗ f , the pair 〈g, π−1
mc(g),mc(f)(F )〉 might not

be a condition, and if it was it might not satisfy 〈f, π−1
mc(g),mc(f)(F )〉 ≤∗ 〈f, F 〉.

(The transitivity πmc(g),β = πmc(f),β ◦ πmc(g),mc(f) may be violated on some ν’s
and β’s). The following lemma shows that by removing a measure zero set from
domπ−1

mc(g),mc(f)(F ), we get a condition and the transitivity.

Claim 3.13. Assume p ∈ PE and f ∈ P∗E are such that f ≤∗ fp. Then there is
q ≤∗ p such that fq = f.

Proof. Let h :κ → P(κ) be such that j(h)(mc(f)) = j′′ dom f . We define a func-
tion F ′ with domain π−1

mc(f),mc(p)(dom p) as follows. For each n < ω and each
〈ν0, . . . , νn−1〉 ∈ dom F ′

F ′(ν0, . . . , νn−1) = (π−1
mc(f),mc(p)(F

p))(ν0, . . . , νn−1) ∪ h(νn−1).

The pair 〈f, F ′〉 might not be a condition since demands (2d), (2e), and (2f), in
definition 3.4 might be violated. We construct F ′′ from F ′ using 3.5, thus getting
〈f, F ′′〉 ∈ PE . The obstacle to 〈f, F ′′〉 ≤∗ p is the transitivity demand (4) of
definition 3.6. We shrink dom F ′′ as follows to ensure it. We observe that for each
β ∈ supp p,

j(πmc(f),β)(mc(f)) = β,

j(πmc(p),β)(j(πmc(f),mc(p))(mc(f))) = β.

So in M we have

∀β ∈ j′′ supp p j(π)j(mc(f)),β(mc(f)) = j(π)j(mc(p)),β(j(πmc(f),mc(p))(mc(f))),

and for each n < ω, and 〈ν0, . . . , νn−1〉 ∈ dom F p,

j(F p
〈ν0,...,νn−1〉)(mc(p)) = j′′ supp p.
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Applying ÃLoś theorem to the last two equations yields that for each n < ω and
〈ν0, . . . , νn−1〉 ∈ dom F ′′,

A〈ν0,...,νn−1〉 = {ν < κ | ∀β ∈ (π−1
mc(f),mc(p)(F

p))〈ν0,...,νn−1〉(ν)

πmc(f),β(ν) = πmc(p),β(πmc(f),mc(p)(ν))} ∈ E(mc(f)).

So, let F be F ′′ shrunken to these sets, namely

Lev0(domF ) = Lev0(dom F ′′) ∩A〈〉,

and

∀n < ω ∀〈ν0, . . . , νn〉 ∈ domF Sucdom F (ν0, . . . , νn) =

Sucdom F ′′(ν0, . . . , νn) ∩A〈ν0,...,νn〉.

Thus transitivity has been restored and we have 〈f, F 〉 ≤∗ p. ¤
Corollary 3.14. Let q ∈ PE and α ∈ domE. Then there is p ≤∗ q with α ∈ supp p.

From the above propositions we see that for all α ∈ domE, Gα is not empty. In
fact using density arguments we get:

Proposition 3.15. Let G be PE-generic. Then in V [G]:
(1) ot Gα = ω.
(2) Gα is unbounded in κ.
(3) α 6= β =⇒ Gα 6= Gβ.

Lemma 3.16. Assume ζ < κ, ∀ξ < ζ pξ ∈ PE, and ∀ξ1, ξ2 < ζ supp pξ1 = supp pξ2 .
Then

{〈ν0, . . . , νn〉 ∈
⋂

ξ<ζ

T pξ | n < ω, ∀ξ1, ξ2 < ζ F pξ1 (ν0, . . . , νn) = F pξ2 (ν0, . . . , νn)}

is an E(α)-tree, where α is the common value of mc(pξ).

Proof. The claim follows by ÃLoś theorem from the fact that for each n < ω and
〈ν0, . . . , νn−1〉 ∈

⋂
ξ<ζ T pξ

,

∀ξ1, ξ2 < ζ j(F pξ1

〈ν0,...,νn−1〉)(mc(pξ1)) = j′′ supp pξ1 =

j′′ supp pξ2 = j(F pξ2

〈ν0,...,νn−1〉)(mc(pξ2)),

and the existence of α ∈ domE such that ∀ξ < ζ mc(pξ) = α. ¤
Proposition 3.17. PE satisfies the κ++-cc.

Proof. Assume X ⊆ PE and |X| = κ++. Since for each p ∈ X we have |supp p| ≤
κ, we can assume that {supp p | p ∈ X} forms a ∆-system. That is, there is
d ∈ [dom E]≤κ such that ∀p, q ∈ X supp p ∩ supp q = d. Since |d| ≤ κ we have
|{f | f : d → [κ]<ω}| ≤ κ+, so we can assume that ∀p, q ∈ X fp ¹ d = fq ¹ d.

Let us fix two conditions p, q ∈ X. Let f = fp ∪ fq. Then f : supp p ∪ supp q →
[κ]<ω. By 3.13 there are r1 ≤∗ p and r2 ≤∗ q such that fr1

= fr2
= f . By 3.16

there is an E(mc(f))-tree T such that F r1 ¹ T = F r2 ¹ T . We set F = F r1 ¹ T .
Then 〈f, F 〉 ≤∗ r1, r2, thus 〈f, F 〉 ≤∗ p, q. ¤

Up to this point we know that in a PE-generic extension we have
(1) cf κ = ω.
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(2) 2κ = |j(κ)|.
(3) Cardinals above κ+ are preserved.

In order to see that no damage happens below κ we use the Prikry ordering.

Proposition 3.18. 〈PE ,≤∗〉 is κ-closed.

Proof. Assume ζ < κ and 〈pξ | ξ < ζ〉 ⊆ PE are such that ∀ξ2 < ξ1 < ζ pξ1 ≤∗ pξ2 .
By the definition of ≤∗ we have

∀ξ1 < ξ2 < ζ fpξ2 ¹ supp pξ1 = fpξ1
,

hence f = ∪{fpξ | ξ < ζ} :
⋃

ξ<ζ supp pξ → [κ]<ω. For each ξ < ζ, by 3.13, there is

rξ ≤∗ pξ such that frξ

= f . By 3.16 there is T , an E(f)-tree, such that ∀ξ1, ξ2 < ζ

F ξ1 ¹ T = F ξ2 ¹ T . We set F = F r0 ¹ T (that is, the common value of F ξ ¹ T .)
Then ∀ξ < ζ 〈f, F 〉 ≤∗ rξ, thus ∀ξ < ζ 〈f, F 〉 ≤∗ pξ. ¤

We show that forcing with 〈PE ,≤∗〉 is the same as forcing with the Cohen forcing
for adding |j(κ)| subsets to κ+.

Lemma 3.19. Assume G∗ is 〈PE ,≤∗〉-generic and p ∈ G∗. If q ∈ PE is such that
fq = fp then q ∈ G∗.

Proof. Assume p, q ∈ PE are such that fp = fq. Pick any r ≤∗ q. Since fr ≤∗ fp,
by 3.13 there is s ≤∗ p such that fs = fr. By 3.16 there is T , an E(mc(fs))-tree,
such that F s ¹ T = F r ¹ T . Then 〈fs, F s ¹ T 〉 ≤∗ r, s, thus 〈fs, F s ¹ T 〉 ≤∗ p, q

That is, the order ≤∗ does not separate p from q. ¤

Corollary 3.20. Forcing with 〈PE ,≤∗〉 is the same as forcing with P∗E.

The following lemma implies that a κ+-closed forcing is κ+-proper (see definition
3.28).

Lemma 3.21. Let χ be large enough so that P(P(P∗E)) ∈ Hχ. Let N ≺ Hχ, f ∈ P∗E
be such that f ∈ N , |N | = κ, and N ⊇ N<κ. Then there is f∗ ≤∗ f such for each
D ∈ N a dense open subset of P∗E, there is g ≥∗ f∗ such that g ∈ D ∩N .

Proof. Let 〈Dξ | ξ < κ〉 be an enumeration of all dense open subsets of P∗E appearing
in N . Since P∗E is κ+-closed, and for each ζ < κ, 〈Dξ | ξ < ζ〉 ∈ N , it is possible
to construct a ≤∗-decreasing sequence 〈fξ | ξ ≤ κ〉 so that f0 ≤∗ f , and for each
ξ < κ, fξ ∈ Dξ ∩N . The lemma is proved by taking f∗ = fκ. ¤

The following definition is used only in the lemma following it. It defines a
‘1-point’ extension of a condition in P∗E .

Definition 3.22. Assume f ∈ P∗E , a ⊆ domE, β ≥E mc(a), and ν < κ. We define
f〈ν,β,a〉 ∈ P∗E to be the function g defined as follows:

(1) dom g = dom f .

(2) g(α) =

{
f(α) _〈πβ,α(ν)〉 α ∈ a ∩ dom f, πβ,α(ν) > max f(α).
f(α) Otherwise.

For k > 0 we define f〈ν0,β0,a0〉,...,〈νk,βk,ak〉 recursively, setting

f〈ν0,β0,a0〉,...,〈νk,βk,ak〉 = (f〈ν0,β0,a0〉,...,〈νk−1,βk−1,ak−1〉)〈νk,βk,ak〉.
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Lemma 3.23. Assume p ∈ PE, n < ω, and for each 〈ν0, . . . , νn−1〉 ∈ dom p, the
set D(ν0, . . . , νn−1) is a dense open subset of 〈PE ,≤∗〉 below p〈ν0,...,νn−1〉. Then
there is p∗ ≤∗ p such that for each 〈µ0, . . . , µn−1〉 ∈ dom p∗

p∗〈µ0,...,µn−1〉 ∈ D(πmc(p∗),mc(p)(µ0), . . . , πmc(p∗),mc(p)(µn−1)).

Proof. Assume p ∈ PE , n < ω, and for each 〈ν0, . . . , νn−1〉 ∈ dom p, the set
D(ν0, . . . , νn−1) is a dense open subset of 〈PE ,≤∗〉 below p〈ν0,...,νn−1〉.

Let χ be large enough so that P(P(PE)) ∈ Hχ. Let N ≺ Hχ be such that
p,PE ∈ N , {D(ν0, . . . , νn−1) | 〈ν0, . . . , νn−1〉 ∈ dom p} ∈ N , |N | = κ, and N ⊇
N<κ. Construct f∗ ≤∗ fp by applying 3.21 to N . By 3.13 there is p∗ ≤∗ p such
that fp∗ = f∗. For each 〈µ0, . . . , µn−1〉 ∈ domF p∗ we set

D∗(µ0, . . . , µn−1) = {f ≤∗ fp | dom f ⊇ F p∗(µ0, . . . , µn−1) ∩N,

∃H 〈f〈µ0,mc(p∗),F p∗ (µ0)∩N〉,...,〈µn−1,mc(p∗),F p∗ (µ0,...,µn−1)∩N〉,H〉 ∈
D(πmc(p∗),mc(p)(µ0), . . . , πmc(p∗),mc(p)(µn−1))}.

(Note that D∗(µ0, . . . , µn−1) ∈ N .) We show that for each 〈µ0, . . . , µn−1〉 ∈
domF p∗ , the set D∗(µ0, . . . , µn−1) is dense open below fp. So, let us fix some
〈µ0, . . . , µn−1〉 ∈ domF p∗ , and pick g ≤∗ fp.

First we enlarge g so as to ensure dom g ⊇ F p∗(µ0, . . . , µn−1)∩N . By definition,

g〈µ0,mc(p∗),F p∗ (µ0)∩N〉,...,〈µn−1,mc(p∗),F p∗ (µ0,...,µn−1)∩N〉 ≤∗
fp

〈µ0,mc(p∗),F p∗ (µ0)〉,...,〈µn−1,mc(p∗),F p∗ (µ0,...,µn−1)〉 =

f
p〈πmc(p∗),mc(p)(µ0),...,πmc(p∗),mc(p)(µn−1)〉 .

Hence, by 3.13, there is q ≤∗ p〈πmc(p∗),mc(p)(µ0),...,πmc(p∗),mc(p)(µn−1)〉 such that

fq = g〈µ0,mc(p∗),F p∗ (µ0)∩N〉,...,〈µn−1,mc(p∗),F p∗ (µ0,...,µn−1)∩N〉.

Thus there is q∗ ≤∗ q such that q∗ ∈ D(πmc(p∗),mc(p)(µ0), . . . , πmc(p∗),mc(p)(µn−1)).
We set g∗ = g ∪ (fq∗ ¹ (supp q∗ \ supp q)). Then

g∗ ≤∗ g,

and

g∗〈µ0,mc(p∗),F p∗ (µ0)∩N〉,...,〈µn−1,mc(p∗),F p∗ (µ0,...,µn−1)∩N〉 = fq∗ .

Hence g∗ ∈ D∗(µ0, . . . , µn−1), by which density was proved.
Since fp∗ was constructed by 3.21, we have that for each 〈µ0, . . . , µn−1〉 ∈

domF p∗ , there is g ≥∗ fp∗ such that g ∈ D∗(µ0, . . . , µn−1) ∩ N . Thus for each
〈µ0, . . . , µn−1〉 ∈ domF p∗ there are gµ0,...,µn−1 ∈ N and H(µ0, . . . , µn−1) ∈ N such
that gµ0,...,µn−1 ≥∗ fp∗ and

〈gµ0,...,µn−1

〈µ0,mc(p∗),F p∗ (µ0)∩N〉,...,〈µn−1,mc(p∗),F p∗ (µ0,...,µn−1)∩N〉, H(µ0, . . . , µn−1)〉 ∈
D(πmc(p∗),mc(p)(µ0), . . . , πmc(p∗),mc(p)(µn−1)) ∩N.

We note that since gµ0,...,µn−1 ∈ N we have

g
µ0,...,µn−1

〈µ0,mc(p∗),F p∗ (µ0)∩N〉,...,〈µn−1,mc(p∗),F p∗ (µ0,...,µn−1)∩N〉 =

g
µ0,...,µn−1

〈µ0,mc(p∗),F p∗ (µ0)〉,...,〈µn−1,mc(p∗),F p∗ (µ0,...,µn−1)〉,
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thus

〈gµ0,...,µn−1

〈µ0,mc(p∗),F p∗ (µ0)〉,...,〈µn−1,mc(p∗),F p∗ (µ0,...,µn−1)〉,H(µ0, . . . , µn−1)〉 ∈
D(πmc(p∗),mc(p)(µ0), . . . , πmc(p∗),mc(p)(µn−1)) ∩N.

We shrink dom p∗ in order to get that for each 〈µ0, . . . , µn−1〉 ∈ domF p∗

〈fp∗

〈µ0,mc(p∗),F p∗ (µ0)〉,...,〈µn−1,mc(p∗),F p∗ (µ0,...,µn−1)〉, F
p∗

〈µ0,...,µn−1〉〉 ≤
∗

〈gµ0,...,µn−1

〈µ0,mc(p∗),F p∗ (µ0)〉,...,〈µn−1,mc(p∗),F p∗ (µ0,...,µn−1)〉,H(µ0, . . . , µn−1)〉.
By the openness of D(πmc(p∗),mc(p)(µ0), . . . , πmc(p∗),mc(p)(µn−1)) and the fact

p∗〈µ0,...,µn−1〉 = 〈fp∗

〈µ0,mc(p∗),F p∗ (µ0)〉,...,〈µn−1,mc(p∗),F p∗ (µ0,...,µn−1)〉, F
p∗

〈µ0,...,µn−1〉〉,
we get that for each 〈µ0, . . . , µn−1〉 ∈ dom F p∗

p∗〈µ0,...,µn−1〉 ∈ D(πmc(p∗),mc(p)(µ0), . . . , πmc(p∗),mc(p)(µn−1)).

¤
Lemma 3.24. Let D ⊆ PE be dense open, p ∈ PE and n < ω. Then there is
p∗ ≤∗ p such that either

∀〈ν0, . . . , νn−1〉 ∈ dom p∗ p∗〈ν0,...,νn−1〉 ∈ D

or

∀〈ν0, . . . , νn−1〉 ∈ dom p∗ ∀q ≤∗ p∗〈ν0,...,νn−1〉 q /∈ D.

Proof. Assume D is a dense open subset of PE , p ∈ PE and n < ω.
For each 〈ν0, . . . , νn−1〉 ∈ dom p set

D∈(ν0, . . . , νn−1) = {q ≤∗ p〈ν0,...,νn−1〉 | q ∈ D},
D⊥(ν0, . . . , νn−1) = {r ≤∗ p〈ν0,...,νn−1〉 | ∀q ∈ D∈(ν0, . . . , νn−1) r ⊥∗ q},
D(ν0, . . . , νn−1) = D∈(ν0, . . . , νn−1) ∪D⊥(ν0, . . . , νn−1).

The openness of D guarantees the ≤∗-openness of D∈(ν0, . . . , νn−1), and by its
definition, D⊥(ν0, . . . , νn−1) is ≤∗-open. Hence D(ν0, . . . , νn−1), as a union of two
open sets, is open, and in fact it is also ≤∗-dense below p〈ν0,...,νn−1〉.

By 3.23, there is p∗ ≤∗ p such that

∀〈µ0, . . . , µn−1〉 ∈ dom p∗

p∗〈µ0,...,µn−1〉 ∈ D(πmc(p∗),mc(p)(µ0), . . . , πmc(p∗),mc(p)(µn−1)).

In order not to carry the projections πmc(p∗),mc(p) all over the proof, we define

E(µ0, . . . , µn−1) = D(πmc(p∗),mc(p)(µ0), . . . , πmc(p∗),mc(p)(µn−1)),

E∈(µ0, . . . , µn−1) = D∈(πmc(p∗),mc(p)(µ0), . . . , πmc(p∗),mc(p)(µn−1)),

and

E⊥(µ0, . . . , µn−1) = D⊥(πmc(p∗),mc(p)(µ0), . . . , πmc(p∗),mc(p)(µn−1)).

Since each of the E(µ0, . . . , µn−1) is the disjoint union of E∈(µ0, . . . , µn−1), and
E⊥(µ0, . . . , µn−1), we can shrink dom p∗ so as to get either

∀〈ν0, . . . , νn−1〉 ∈ dom p∗ p∗〈ν0,...,νn−1〉 ∈ E∈(ν0, . . . , νn−1)
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or

∀〈ν0, . . . , νn−1〉 ∈ dom p∗ p∗〈ν0,...,νn−1〉 ∈ E⊥(ν0, . . . , νn−1).

Looking at the definition of E⊥ and E∈ (and implicitly the definitions of D⊥ and
D∈), we see that we have either

∀〈ν0, . . . , νn−1〉 ∈ dom p∗ p∗〈ν0,...,νn−1〉 ∈ D

or

∀〈ν0, . . . , νn−1〉 ∈ dom p∗ ∀q ≤∗ p∗〈ν0,...,νn−1〉 q /∈ D.

¤

Theorem 3.25. Let D ⊆ PE be dense open and p ∈ PE. Then there are p∗ ≤∗ p
and n < ω such that ∀〈ν0, . . . , νn−1〉 ∈ dom p∗ p∗〈ν0,...,νn−1〉 ∈ D.

Proof. Assume D is a dense open subset of PE and p ∈ PE . For each n < ω we set

D∗
n = {p∗ ≤∗ p | (∀〈ν0, . . . , νn−1〉 ∈ dom p∗ p∗〈ν0,...,νn−1〉 ∈ D) or

(∀〈ν0, . . . , νn−1〉 ∈ dom p∗ ∀q ≤∗ p∗〈ν0,...,νn−1〉 q /∈ D)}.
By 3.24, D∗

n is a dense open subset of 〈PE ,≤∗〉 below p. Since 〈PE ,≤∗〉 is κ-closed,
the set D∗ =

⋂
n<ω D∗

n is a dense open subset of 〈PE ,≤∗〉 below p. We pick p∗ ∈ D∗.
Then for each n < ω, either

∀〈ν0, . . . , νn−1〉 ∈ dom p∗ p∗〈ν0,...,νn−1〉 ∈ D,

or

∀〈ν0, . . . , νn−1〉 ∈ dom p∗ ∀q ≤∗ p∗〈ν0,...,νn−1〉 q /∈ D.

Towards a contradiction, let us assume that for each n < ω

∀〈ν0, . . . , νn−1〉 ∈ dom p∗ ∀q ≤∗ p∗〈ν0,...,νn−1〉 q /∈ D.

This is just a cumbersome way to write ∀q ≤ p q /∈ D, contradicting the density of
D. Thus, there is n < ω such that

∀〈ν0, . . . , νn−1〉 ∈ dom p∗ p∗〈ν0,...,νn−1〉 ∈ D.

¤

Claim 3.26. Let σ be a statement in the PE-forcing language and p ∈ PE. Then
there is p∗ ≤∗ p such that p∗ ‖ σ.

Proof. Let D = {q ∈ PE | q ‖ σ}. Then D is a dense open subset of PE . By 3.25
there are p∗′ ≤ p and k < ω such that

∀〈ν0, . . . , νk〉 ∈ dom p∗′ p∗′〈ν0,...,νk〉 ∈ D.

That is

∀〈ν0, . . . , νk〉 ∈ dom p∗′ p∗′〈ν0,...,νk〉 ‖ σ.

Let

A1 = {〈ν0, . . . , νk〉 ∈ dom p∗′ | p∗′〈ν0,...,νk〉 ° σ},
A2 = {〈ν0, . . . , νk〉 ∈ dom p∗′ | p∗′〈ν0,...,νk〉 ° ¬σ}.
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Obviously, A1 ∩ A2 = ∅. Let i ∈ {1, 2} be so that Ai ∈ Ek(mc(p∗′)). Let p∗ =
〈fp∗′ , F p∗′ ¹ Ai〉. Since {p∗〈ν0,...,νk〉 | 〈ν0, . . . , νk〉 ∈ dom p∗} is a maximal anti-chain
below p∗, we get p∗ ‖ σ. ¤

So now we know also that in a PE-generic extension:
(1) There are no new bounded subsets of κ.
(2) (Hence) No cardinal below κ is collapsed.
(3) (Hence) κ is not collapsed.

One more cardinal is preserved, κ+. We will prove the κ+-properness of PE in order
to show this.

The notions 〈N,P 〉-generic and properness, as defined in [11], were used for
countable elementary submodels of Hχ. We need these notions for submodels of
size κ.

Definition 3.27. Let χ be large enough so that P(P(P )) ∈ Hχ, where P is some
forcing notion. Let N ≺ Hχ be such that |N | = κ, N ⊇ N<κ and P ∈ N . Then a
condition p ∈ P is called 〈N, P 〉-generic if

p ° p∀D ∈ Ň D is dense open in P̌ =⇒ D ∩G
e
∩ Ň 6= ∅q,

where G
e

is the name of a P -generic filter.

Definition 3.28. Let χ be large enough so that P(P(P )) ∈ Hχ, where P is some
forcing notion. The forcing notion P is called κ+-proper if for each N ≺ Hχ and
each q ∈ P ∩N such that |N | = κ, N ⊇ N<κ and P ∈ N , there is p ≤ q which is
〈N, P 〉-generic.

Claim 3.29. Let χ be large enough so that P(P(PE)) ∈ Hχ. Assume p ∈ PE and
N ≺ Hχ is such that |N | = κ, N ⊇ N<κ and p,PE ∈ N . Then there is p∗ ≤∗ p
such that p∗ is 〈N,PE〉-generic.

Proof. Assume p ∈ PE and N ≺ Hχ is such that |N | = κ, N ⊇ N<κ and p,PE ∈ N .
Construct f ≤∗ fp applying 3.21 to N . By 3.13, there is p∗ ≤∗ p such that

fp∗ = f . We show that p∗ is 〈N,PE〉-generic. So let D ∈ N be a dense open subset
of PE and q ≤ p∗.

Then there are n < ω and 〈ν0, . . . , νn−1〉 ∈ dom p such that q ≤∗ p〈ν0,...,νn−1〉.
We set

D∗ = {fp ∪ (fr ¹ (supp r \ supp p)) | r ≤∗ p〈ν0,...,νn−1〉,

∃l < ω ∀〈µ0, . . . , µl−1〉 ∈ dom r r〈µ0,...,µl−1〉 ∈ D}.
We note that D∗ is ≤∗-dense open below fp. Since D ∈ N , we have D∗ ∈ N . By
the way we chose f we see that there is g ≥∗ f such that g ∈ D∗ ∩N . Hence there
are r ∈ N and l < ω such that r ≤∗ p〈ν0,...,νn−1〉, fp ∪ (fr ¹ (supp r \ supp p)) = g
and

∀〈µ0, . . . , µl−1〉 ∈ dom r r〈µ0,...,µl−1〉 ∈ D ∩N.

In fact q ‖∗ r. That is there is q∗ ≤∗ q (a shrinkage of dom q is enough, actually)
such that q∗ ≤∗ r. Since for each 〈µ0, . . . , µl−1〉 ∈ dom q∗

q∗〈µ0,...,µl−1〉 ° pr〈πmc(q∗),mc(r)(µ0),...,πmc(q∗),mc(r)(µl−1)〉 ∈ G
e

q,

we get q∗ °PE
pĎ ∩ Ň ∩G

e
6= ∅q. ¤



14 CARMI MERIMOVICH

Corollary 3.30. PE is κ+-proper.

Corollary 3.31. In a PE-generic extension, κ+ is preserved.

All in all we get the Gitik-Magidor theorem for any extender:

Theorem 3.32. Assume j : V → M ⊃ Mκ, crit(j) = κ and g(j) ⊂ j(κ). Let E be
the extender derived from j and let G be PE-generic. Then in V [G]:

(1) All the cardinals are preserved.
(2) cf κ = ω.
(3) 2κ = |j(κ)|.
(4) No new bounded subsets are added to κ.

4. Application to pcf theory.

The assumptions we use in this section are: The GCH and the existence of an
elementary embedding j : V → M ⊃ Mκ such that crit(j) = κ, g(j) ⊂ j(κ) and E
is the extender derived from j. Throughout this section D will be the cofinite filter
over ω.

The forcing PE is the one defined in the previous section and we let G be a
PE-generic filter over V . The basic observation used throughout this section is that
tcfV [G]

∏
Gτ/D can be computed from tcfV

∏
n<ω jn(τ)/D.

Lemma 4.1. If τ ∈ domE and p ∈ PE, then there is p∗ ≤∗ p such that

∀n < ω jω(p∗)〈mc(p∗),...,jn(mc(p∗))〉 °jω(PE)
pjω(G

e
τ )(|fp∗(τ)|+ n) = jn(τ)q.

Proof. Assume τ ∈ domE and p ∈ PE . By 3.14 there is p∗ ≤∗ p such that
τ ∈ supp p∗. We shrink dom p∗ so that ∀〈ν〉 ∈ dom p∗ τ ∈ F p∗(ν). Hence, from the
definition of PE , we get

∀n < ω ∀〈ν0, . . . , νn〉 ∈ dom p∗

p∗〈ν0,...,νn〉 °PE

pG
e

τ (|fp∗(τ)|+ n) = πmc(p∗),τ (νn)q.

ÃLoś theorem yields

∀n < ω jω(p∗)〈mc(p∗),...,jn(mc(p∗))〉 °jω(PE)
pjω(G

e
τ )(|fp∗(τ)|+ n) = jn(τ)q.

¤

We would have liked to have ρ < τ =⇒ Gρ/D < Gτ/D. However, the Cohen
initial-segments of Gρ, Gτ ruin this. We can get a good approximation to this
monotonicity using shifts of Gρ, hence the following definition. By Z we mean the
set of integers {0, 1,−1, 2,−2, . . .}.
Definition 4.2. (In V [G]) Assume τ ∈ domE and k ∈ Z. Then Gτ,k : ω → κ is

Gτ,k(n) =

{
Gτ (n− k) k ≤ n < ω,

0 0 ≤ n < k.

As usual, G
e

τ,k will be the PE-name of this function.

Lemma 4.3. (In V [G]) ∀τ ∈ dom E ∀k1, k2 ∈ Z cf
∏

Gτ,k1/D = cf
∏

Gτ,k2/D.

Proof. This is a basic pcf fact. ¤
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Lemma 4.4. (In V [G]) If τ ∈ domE, k1, k2 ∈ Z and k1 < k2, then Gτ,k1/D >
Gτ,k2/D.

Proof. This is immediate since Gτ is a strictly increasing sequence. ¤

Lemma 4.5. If p ∈ PE, ρ, τ ∈ domE and ρ < τ , then there is p∗ ≤∗ p such that
p∗ °PE

pG
e

ρ/D < G
e

τ,|fp∗ (ρ)−fp∗ (τ)|/D < G
e

ρ,−1/Dq.

Proof. Assume ρ, τ ∈ dom E, ρ < τ and p ∈ PE . By 3.14 and 4.1 there is p∗ ≤∗ p
such that ρ, τ ∈ supp p∗ and

∀n < ω jω(p∗)〈mc(p∗),...,jn(mc(p∗))〉 °jω(PE)
pjω(Gρ)(|fp∗(ρ)|+ n) = jn(ρ)q,

∀n < ω jω(p∗)〈mc(p∗),...,jn(mc(p∗))〉 °jω(PE)
pjω(Gτ )(|fp∗(τ)|+ n) = jn(τ)q.

We shrink dom p∗ in order to have ∀〈ν〉 ∈ dom p∗ ρ, τ ∈ F p∗(ν). (In fact the
condition generated by 4.1 satisfies this). We set k = |fp∗(ρ)| − |fp∗(τ)|. Thus

∀n < ω jω(p∗)〈mc(p∗),...,jn+1(mc(p∗))〉 °jω(PE)
pjω(G

e
ρ)(|fp∗(ρ)|+ n) =

jn(ρ) < jn(τ) = jω(G
e

τ )(|fp∗(τ)|+ n) =

jω(G
e

τ )(|fp∗(ρ)|+ n− (|fp∗(ρ)| − |fp∗(τ)|)) =

jω(G
e

τ,k)(|fp∗(ρ)|+ n)q,

and

∀n < ω jω(p∗)〈mc(p∗),...,jn+1(mc(p∗))〉 °jω(PE)
pjω(G

e
τ,k)(|fp∗(ρ)|+ n) =

jω(G
e

τ )(|fp∗(ρ)|+ n− (|fp∗(ρ)| − |fp∗(τ)|)) =

jω(G
e

τ )(|fp∗(τ)|+ n) = jn(τ) < jn+1(ρ) =

jω(G
e

ρ)(|fp∗(ρ)|+ n + 1) = jω(G
e

ρ,−1)(|fp∗(ρ)|+ n)q.

ÃLoś theorem and shrinking dom p∗ a bit yields ∀n < ω ∀〈ν0, . . . , νn+1〉 ∈ dom p∗

p∗〈ν0,...,νn+1〉 °PE

pG
e

ρ(|fp∗(ρ)|+ n) =πmc(p∗),ρ(νn) <

πmc(p∗),τ (νn) = G
e

τ,k(|fp∗(ρ)|+ n)q

and

p∗〈ν0,...,νn+1〉 °PE

pG
e

τ,k(|fp∗(ρ)|+ n) =πmc(p∗),τ (νn) <

πmc(p∗),ρ(νn+1) = G
e

ρ,−1(|fp∗(ρ)|+ n)q.

Which means p∗ °PE
pG
e

ρ/D < G
e

τ,k/D < G
e

ρ,−1/Dq. ¤

Definition 4.6. (In V [G]) For each τ ∈ domE we set Gτ∗ = Gτ,k where k ∈ Z is
chosen so that Gκ/D ≤ Gτ∗/D < Gκ,−1. For each τ ∈ domE, G

e
τ∗ is the PE-name

of Gτ∗.

An immediate corollary of this definition and 4.1 is
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Corollary 4.7. Assume p ∈ PE and τ ∈ domE. Then there is p∗ ≤∗ p such that
for each n < ω

jω(p∗)〈mc(p),...,jn(mc(p))〉 °jω(PE)
pjω(G

e
τ∗)(|fp(κ)|+ n) = jn(τ)q.

Corollary 4.8. (In V [G]) 〈Gτ∗/D | τ ∈ domE〉 is a strictly increasing sequence
in

∏
Gκ,−1/D.

Proof. Let p ∈ PE , ρ, τ ∈ domE and ρ < τ . By 4.7 there is p∗ ≤∗ p such that for
each n < ω

jω(p∗)〈mc(p∗),...,jn(mc(p∗))〉 °jω(PE)
pjω(Gρ∗)(|fp(κ)|+ n) = jn(ρ)q,

jω(p∗)〈mc(p∗),...,jn(mc(p∗))〉 °jω(PE)
pjω(Gτ∗)(|fp(κ)|+ n) = jn(τ)q,

and

jω(p∗)〈mc(p),...,jn(mc(p)),jn+1(mc(p))〉 °jω(PE)
pjω(G

e
κ,−1)(|fp(κ)|+ n) = jn+1(κ)q.

Since ρ < τ < j(κ) we have ∀n < ω jn(ρ) < jn(τ) < jn+1(κ), hence for each n < ω

jω(p∗)〈mc(p∗),...,jn(mc(p∗)),jn+1(mc(p∗))〉 °jω(PE)

pjω(Gρ∗)(|fp(κ)|+ n) < jω(Gτ∗)(|fp(κ)|+ n) < jω(Gκ,−1)(|fp(κ)|+ n)q.

ÃLoś theorem and shrinking p∗ a bit yields

∀n < ω ∀〈ν0, . . . , νn, νn+1〉 ∈ dom p∗ p∗〈ν0,...,νn,νn+1〉
°PE

pGρ∗(|fp(κ)|+ n) < Gτ∗(|fp(κ)|+ n) < Gκ,−1(|fp(κ)|+ n)q.

Hence p∗ °PE
pG
e

ρ∗/D < G
e

τ∗/D < G
e

κ,−1q. ¤

Lemma 4.9. If τ ∈ domE and p °PE
pḟ ∈ ∏

G
e

τ∗q, then there are p∗ ≤∗ p and

〈αn | n < ω〉 ∈ ∏
n<ω jn(τ) such that

∀n < ω jω(p∗)〈mc(p∗),...,jn(mc(p∗))〉 °jω(PE)
pjω(ḟ)(|fp∗(κ)|+ n) = αn

q.

Proof. Let τ ∈ dom E and p °PE
pḟ ∈ ∏

G
e

τ∗q. By 4.7 there is q ≤∗ p such that

∀n < ω jω(q)〈mc(q),...,jn(mc(q))〉 °jω(PE)
pjω(G

e
τ∗)(|fp(κ)|+ n) = jn(τ)q.(1)

We construct by induction a ≤∗-decreasing sequence 〈rn | n < ω〉 and 〈αn | n <
ω〉 ∈ ∏

n<ω jn(τ) as follows:
• n = 0: r0 = q.
• n = m + 1: Let Dm = {r ∈ PE | ∃ζ < κ r °PE

pḟ(|fp∗(κ)| + m) = ζq}.
By 3.25 there are rm+1 ≤∗ rm, k, and f : dom rm+1 ∩ [κ]k+1 → κ such that
m ≤ k < ω and

∀〈ν0, . . . , νk〉 ∈ dom rm+1 rm+1
〈ν0,...,νk〉 °PE

pḟ(|fp∗(κ)|+ m) = f(ν0, . . . , νk)q.

By ÃLoś theorem

(2) jω(rm+1)〈mc(rm+1),...,jk(mc(rm+1))〉 °jω(PE)

pjω(ḟ)(|fp∗(κ)|+ m) =

jω(f)(mc(rm+1), . . . , jk(mc(rm+1)))q.



PRIKRY ON EXTENDERS, REVISITED 17

From (1) we infer

jω(rm+1)〈mc(rm+1),...,jk(mc(rm+1))〉 °jω(PE)

pjω(f)(mc(rm+1), . . . , jk(mc(rm+1))) =

jω(ḟ)(|fp∗(κ)|+ m) < jω(G
e

τ∗)(|fp∗(κ)|+ m) = jm(τ)q.

This means

jω(f)(mc(rm+1), . . . , jk(mc(rm+1))) < jm(τ).

We set αm = jω(f)(mc(rm+1), . . . , jk(mc(rm+1))). Since αm < jm(τ),
there is g : dom rm+1 ∩ [κ]m+1 → κ such that

αm = jω(g)(mc(rm+1), . . . , jm(mc(rm+1))).

So in (2) we can substitute g for f and m for k and get

jω(rm+1)〈mc(rm+1),...,jm(mc(rm+1))〉 °jω(PE)
pjω(ḟ)(|fp∗(κ)|+ m) = αm

q.

Using 3.18 we find p∗ ∈ PE such that ∀n < ω p∗ ≤ rn. ¤

Lemma 4.10. Assume τ ∈ domE, cf τ > ω, cf τ 6= κ and 〈αn | n < ω〉 ∈∏
n<ω jn(τ). Then there is ρ < τ such that 〈αn | n < ω〉 < 〈jn(ρ) | n < ω〉.

Proof. We split the proof according to the relation between cf τ and κ:

• cf τ > κ: We note that for each n < ω there are fn :[κ]n → τ and βn ∈
domE such that jn(fn)(βn, . . . , jn−1(βn)) = αn. Since cf τ > κ, there is
ρ < τ such that ∀n < ω ∀〈ν0, . . . , νn−1〉 ∈ [κ]n ρ > fn(ν0, . . . , νn−1). Hence
∀n < ω jn(ρ) > αn.

• cf τ < κ: Let A = 〈τξ | ξ < cf τ〉 be cofinal in τ . So for each n < ω we get
jn(A) is cofinal in jn(τ). Since cf τ < κ we have that jn(A) = j′′nA. This
means that for each n < ω there is ξn < cf τ such that αn < jn(τξn) < jn(τ).
Since cf τ > ω there is ξ < cf τ such that for each n < ω, ξ > ξn. Let
ρ = τξ. Then for each n < ω, ρ > τξn and jn(ρ) > jn(τξn) > αn. Hence
〈αn | n < ω〉 < 〈jn(ρ) | n < ω〉.

¤

Corollary 4.11. If τ ∈ dom E, cf τ > ω and cf τ 6= κ, then °PE
p tcf

∏
G
e

τ∗/D =

cf τq.

Proof. Let τ ∈ domE, cf τ > ω and cf τ 6= κ. By 4.8, 〈Gρ∗/D | κ ≤ ρ < τ〉 is a
strictly increasing sequence below Gτ∗/D. We will get the conclusion of the lemma
if we prove

°PE

pḟ ∈
∏

G
e

τ∗ =⇒ ∃ρ < τ ḟ/D < G
e

ρ∗/Dq.

So, let p °PE
pḟ ∈ ∏

G
e

τ∗q.

By 4.9, there are p∗ ≤∗ p and 〈αn | n < ω〉 ∈ ∏
n<ω jn(τ) such that for each

n < ω

jω(p∗)〈mc(p∗),...,jn(mc(p∗))〉 °jω(PE)
pjω(ḟ)(|fp∗(κ)|+ n) = αn

q
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and

jω(p∗)〈mc(p∗),...,jn(mc(p∗))〉 °jω(PE)
pjω(G

e
τ∗)(|fp∗(κ)|+ n) = jn(τ)q.

By 4.10, there is ρ < τ such that 〈αn | n < ω〉 < 〈jn(ρ) | n < ω〉. By 4.7 there is
p∗∗ ≤∗ p∗ such that for each n < ω

jω(p∗∗)〈mc(p∗∗),...,jn(mc(p∗∗))〉 °jω(PE)
pjω(G

e
ρ∗)(|fp∗(κ)|+ n) = jn(ρ)q.

ÃLoś theorem and shrinking dom p∗∗ yields p∗∗ °PE
pḟ/D < G

e
ρ∗/Dq. ¤

Lemma 4.12. Assume τ ∈ domE, cf τ = κ, and 〈αn | n < ω〉 ∈ ∏
n<ω jn(τ).

Then there is ρ < j(τ) such that 〈αn+1 | n < ω〉 < 〈jn(ρ) | n < ω〉.
Proof. Assume τ ∈ domE, cf τ = κ and 〈αn | n < ω〉 ∈ ∏

n<ω jn(τ). Then for each
0 < n < ω there are fn :[κ]n → τ and βn ∈ domE such that

jn(fn)(βn, . . . , jn−1(βn)) = αn < jn(τ),

where ∀〈ν0, . . . , νn−2〉 ∈ [κ]n−1 j(fn)(ν0, . . . , νn−2, βn) < j(τ). Since cfM j(τ) =
j(κ) > κ and M ⊃ Mκ, there is ρ < j(τ) such that

∀0 < n < ω ∀〈ν0, . . . , νn−2〉 ∈ [κ]n−1 j(fn)(ν0, . . . , νn−2, βn) < ρ.

Hence ∀ 0 < n < ω αn = jn(fn)(βn, . . . , jn−1(βn)) < jn−1(ρ) < jn(τ). That is
〈αn+1 | n < ω〉 < 〈jn(ρ) | n < ω〉. ¤

Corollary 4.13. If τ ∈ domE and cf τ = κ, then °PE
p tcf

∏
G
e

τ∗/D = cf j(κ)q.

Proof. Assume τ ∈ domE and cf τ = κ. For each ρ < j(τ) there are τρ ∈ dom E
and h̄ρ : κ → τ such that ρ = j(h̄ρ)(τρ). In the generic extension we set hρ =
h̄′′ρGτρ∗,1. We note that 〈hρ/D | ρ < j(τ)〉 is an increasing sequence in

∏
Gτ∗,

and that cfV [G] j(τ) = cfV [G] j(κ) since cfM (j(τ)) = j(κ) > κ, M ⊃ Mκ and PE

preserves cardinals above κ. Thus we will get the conclusion of the lemma if we
prove °PE

pḟ ∈ ∏
G
e

τ∗ =⇒ ∃ρ < j(τ) ḟ/D < hρ/Dq. So let p °PE
pḟ ∈ ∏

G
e

τ∗q.

By 4.9, there are p∗ ≤∗ p and 〈αn | n < ω〉 ∈ ∏
n<ω jn(τ) such that

∀n < ω jω(p∗)〈mc(p∗),...,jn(mc(p∗))〉 °jω(PE)
pjω(ḟ)(|fp∗(κ)|+ n) = αn

q

and

∀n < ω jω(p∗)〈mc(p∗),...,jn(mc(p∗))〉 °jω(PE)
pjω(G

e
τ∗)(|fp∗(κ)|+ n) = jn(τ)q.

By 4.12, there is ρ < j(τ) such that 〈αn+1 | n < ω〉 < 〈jn(ρ) | n < ω〉. By 4.7 there
is p∗∗ ≤∗ p∗ such that

∀n < ω jω(p∗∗)〈mc(p∗∗),...,jn(mc(p∗∗))〉 °jω(PE)
pjω(G

e
τρ∗)(|fp∗(κ)|+ n) = jn(τρ)q.

Hence for each n < ω

jω(p∗∗)〈mc(p∗∗),...,jn(mc(p∗∗)),jn+1(mc(p∗∗))〉 °jω(PE)
pjω(ḟ)(|fp∗(κ)|+ n + 1) =

αn+1 < jn(ρ) = jω(h̄ρ)(jn(τρ)) =

jω(h̄ρ)(jω(G
e

τρ∗)(|fp∗(κ)|+ n)) = jω(hρ)(|fp∗(κ)|+ n + 1)q.

ÃLoś theorem and shrinking dom p∗∗ yields p∗∗ °PE
pḟ/D < hρ/Dq. ¤
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For the specific case of
∏

Gκ,−1/D, reading the above proof shows that we use
just ρ ∈ domE, the functions h̄ρ are id, and τρ = ρ. Thus the cofinal sequence of
length j(κ) in

∏
Gκ,−1 constructed in the proof is 〈Gρ∗ | ρ < j(κ)〉. Thus

Corollary 4.14. 〈Gτ∗/D | κ ≤ τ < j(κ)〉 is cofinal in
∏

Gκ,−1.

The following theorem summarizes the facts proved previously for the E is a
superstrong extender case.

Theorem 4.15. Assume GCH, j : V → M ⊃ Mκ, M ⊃ Vj(κ), crit j = κ and
g(j) ⊂ j(κ). Let E be the extender derived from j and let G be PE-generic. Then
V [G] is a cardinal preserving generic extension in which cf κ = ω, κω = j(κ), and
there is a Prikry sequence Gκ in κ and a scale 〈Gλ∗/D | λ ∈ [κ, j(κ))〉 of length
j(κ) in

∏
Gκ,−1/D such that tcf

∏
Gλ∗/D = λ for each regular cardinal λ < j(κ).

The only thing we were able to say when cfV τ = ω is cfV [G]

∏
Gτ∗/D ≤ 2ℵ0 .

5. Generic by Iteration

What we would have liked to have is:

Aim. Assume GCH, j :V → M ⊃ Mκ, crit(j) = κ and g(j) ⊂ j(κ). Let E be the
extender derived from j. Then there is G ∈ V which is jω(PE)-generic over Mω.

Alas, we were not able to achieve this aim. The referee has pointed out that
the aim is not all that reasonable since the forcing PE incorporates the forcing P∗E ,
which is essentially Cohen forcing and not like Prikry forcing at all.

In this section we use three approaches to obtain approximations to this aim.
First, in theorem 5.1, we obtain a generic filter for an elementary substructure of
the iterated ultrapower instead of the full iterated ultrapower. Second, in theorem
5.2, we force over V to explicitly add the Cohen component of PE to obtain a filter
generic over the full iterated ultrapower. Finally, in theorem 5.3, we assume the
existence in V of an extender stronger than E to obtain a filter in V which is generic
over the full iterated ultrapower.

We begin by showing how to construct a generic filter over an elementary sub-
model in Mω.

Theorem 5.1. Assume GCH, j : V → M ⊃ Mκ, crit(j) = κ, and g(j) ⊂ j(κ). Let
E be the extender derived from j, and κω = jω(κ). Let N ∈ Mω be such that in Mω

we have: jω(PE) ∈ N , N ≺ HMω
χ for a large enough χ, |N | = κω and N ⊇ N<κω .

Then there is G ∈ V which is jω(PE)-generic over N .

Proof. By 3.29 invoked in Mω there is p ∈ jω(PE) which forces genericity over N .
Let k < ω be such that p = jk,ω(pk) and N = jk,ω(Nk). We set for each k < n < ω,
pn = jk,n(pk)〈mc(pk),...,jk,n−1(mc(pk))〉 and Nn = jk,n(Nk).

We set for each k ≤ n < ω

Gn = {q ∈ jn(PE) | q ≥ pn}

and then

G =
⋃

k≤n<ω

j′′n,ωGn.
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Since for each k ≤ n < ω, pn+1 ≤∗ jn,n+1(pn)〈mc(pn)〉, we get that G is a filter. We
show that it intersects each dense open subset of jω(PE) appearing in N . So let
D ∈ N be a dense open subset of jω(PE).

Let Dn and n < ω be such that k ≤ n < ω and jn,ω(Dn) = D. Then pn forces
genericity over Nn. That means (by the proof of 3.29) there are q ≥∗ pn and l < ω
such that q ∈ Nn and ∀〈ν0, . . . , νl−1〉 ∈ dom q q〈ν0,...,νl−1〉 ∈ Dn ∩Nn. Hence

jn,n+l(q)〈mc(q),...,jn,n+l−1(mc(q))〉 ∈ jn,n+l(Dn ∩Nn),

thus

jn,ω(q)〈mc(q),...,jn,n+l−1(mc(q))〉 ∈ D ∩N.

Noting that

jn,n+l(q)〈mc(q),...,jn,n+l−1(mc(q))〉 ≥∗ jn,n+l(pn)〈mc(pn),...,jn,n+l−1(mc(pn))〉 ≥∗ pn+l,

we get

jn,n+l(q)〈mc(q),...,jn,n+l−1(mc(q))〉 ∈ Gn+l,

thus

jn,ω(q)〈mc(q),...,jn,n+l−1(mc(q))〉 ∈ G.

¤

We continue by showing the existence of a generic filter over Mω in a P∗E-generic
extension of V .

Theorem 5.2. Assume GCH, j :V → M ⊃ Mκ, crit(j) = κ and g(j) ⊂ j(κ). Let
E be the extender derived from j. Let G∗ be P∗E-generic over V . Then in V [G∗]
there is G which is jω(PE)-generic over Mω.

Proof. Let G∗ be P∗E-generic. In V [G∗] we set

G′ = {jω(p)〈mc(p),j(mc(p))...,jn−1(mc(p))〉 | fp ∈ G∗, n < ω}.

and

G = {q ∈ jω(PE) | ∃p ∈ G′ q ≥ p}.
We show that G is jω(PE)-generic over Mω. So, Let Dω ∈ Mω be a dense open
subset of jω(PE).

Let n < ω be minimal such that there are α ∈ dom E and D :[κ]n → V satisfying
jω(D)(α, j(α), . . . , jn−1(α)) = Dω. We set

D∗ = {fp ∈ P∗E | p ∈ PE , ∃l < ω jω(p)〈mc(p),j(mc(p)),...,jn+l−1(mc(p))〉) ∈ Dω}.
We prove that D∗ is a dense open subset of P∗E . So, let f ∈ P∗E .

Pick p ∈ PE such that fp ≤∗ f and α ∈ supp p. For each 〈ν0, . . . , νn−1〉 ∈ dom p,
the set

D∗(ν0, . . . , νn−1) = {q ≤∗ p〈ν0,...,νn−1〉 | ∃l < ω ∀〈µ0, . . . , µl−1〉 ∈ dom q

q〈µ0,...,µl−1〉 ∈ D(πmc(q),α(ν0), . . . , πmc(q),α(νn−1))}
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is dense open in 〈PE ,≤∗〉 below p〈ν0,...,νn−1〉. Thus by 3.23 there is p∗ ≤∗ p such
that

∀〈ν0, . . . , νn−1〉 ∈ dom p∗ p∗〈ν0,...,νn−1〉 ∈
D∗(πmc(p∗),mc(p)(ν0), . . . , πmc(p∗),mc(p)(νn−1)).

Thus some shrinkage of dom p∗ yield that there is l < ω such that

∀〈ν0, . . . , νn−1, µ0, . . . , µl−1〉 ∈ dom p∗ p∗〈ν0,...,νn−1,µ0,...,µl−1〉 ∈
D(πmc(p∗),α(ν0), . . . , πmc(p∗),α(νn−1)).

That is

jω(p∗)〈mc(p∗),...,jn+l−1(mc(p∗)〉 ∈ jω(D)(α, . . . , jn−1(α)) = Dω.

Thus fp∗ ∈ D∗, hence the density of D∗ ∈ V is proved.
So there are f ∈ G∗ ∩D∗, l < ω, and p ∈ PE such that fp = f and

jω(p∗)〈mc(p∗),j(mc(p∗)),...,jn+l−1 mc(p∗))〉 ∈ Dω.

By the definition of G, we get

jω(p∗)〈mc(p∗),j(mc(p∗)),...,jn+l−1(mc(p∗))〉 ∈ G.

¤
In the following theorem we assume the existence of an extender on κ, but use

only part of the extender as a base for the forcing notion.

Theorem 5.3. Assume GCH, i : V → N ⊃ N ζ , crit(i) = κ, g(i) ⊆ i(ζ). Assume
κ < µ < i(κ) satisfies µ(κ+) ≤ ζ. Let F be the extender derived from i and
E = F ¹ µ. Then there is G ∈ V which is iω(PE)-generic over Nω.

Proof. Let An = {A ∈ Nn | A is a maximal anti-chain in in(PE)}. For each maxi-
mal anti-chain A ⊂ PE we set D(A) = {p ∈ PE | ∃a ∈ A p ≤ a} (thus D(A) is a
dense open subset of PE). For each n < ω we have jn(|A0|) ≤ jn(|PE |(κ+)) ≤ jn(ζ).
Thus i′′n,n+1An ∈ Nn+1. Moreover, for q ∈ in+1(PE) we can invoke 3.25 in Nn+1

for in(µ(κ+))-many times to get p ≤∗ q such that for each A ∈ An there is l < ω
such that ∀〈ν0, . . . , νl−1〉 ∈ dom p p〈ν0,...,νl−1〉 ∈ in,n+1(D(A)).

Using this fact we construct a sequence 〈pn | n < ω〉 such that p0 ∈ PE is
arbitrary, pn+1 ≤∗ in,n+1(pn)〈mc(pn)〉, and for each A ∈ An there is l < ω such that
∀〈ν0, . . . , νl−1〉 ∈ dom pn+1 pn+1

〈ν0,...,νl−1〉 ∈ in,n+1(D(A)).
For each n < ω we set

Gn = {q ∈ in(PE) | q ≥ pn},
and then

G =
⋃

n<ω

i′′n,ωGn.

We show G is iω(PE)-generic over Nω. Let A ∈ Nω be a maximal anti-chain in
iω(PE).

We take n < ω and An such that in,ω(An) = A. Then there is l < ω such that
∀〈ν0, . . . , νl−1〉 ∈ dom pn+1 pn+1

〈ν0,...,νl−1〉 ∈ in,n+1(D(An)). Hence

in+1,n+l+1(pn+1)〈mc(pn+1),...,in+1,n+l(mc(pn+1))〉 ∈ in,n+l+1(D(An)).
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Since by the construction of 〈pm | m < ω〉 we have

pn+l+1 ≤∗ in+1,n+l+1(pn+1)〈mc(pn+1),...,in+1,n+l(mc(pn+1))〉,

we get in+1,ω(pn+1)〈mc(pn+1),...,in+1,n+l(mc(pn+1))〉 ∈ G ∩ D(A). Since G is upward
closed we get G ∩A 6= ∅. ¤
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