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Abstract. The extender based Prikry forcing notion is being generalized to
supercompact extenders.

1. Introduction

In this work a generalization of the extender base Prikry forcing notion to su-
percompact extenders is presented. The extender based Prikry forcing notion was
introduced in [1]. A generalization of it to arbitrary short extenders appeared in
[2]. These papers contain historical exposition of the topics at hand. The theorem
proved in the current paper is the following:

Theorem. Assume the GCH, j :V →M is an elementary embedding such that M
is transitive, M ⊇ <µM , crit(j) = κ, µ is regular such that κ < µ ≤ j(κ), and if
µ = λ+ then cf λ ≥ κ. Then there is a generic extension V [G] of the universe V
such that:

(1) V and V [G] have the same bounded subsets of κ, thus κ and all the cardinals
below it are preserved.

(2) cfV [G] κ = ω, and all V -cardinals in (κ, µ) are collapsed.
(3) All the cardinals ≥ µ are preserved.
(4) 2κ = |j(µ)|.

The structure of this work is as follows. In section 2 we list facts about elementary
embeddings and extenders. In section 3 the Prikry forcing with supercompact
extender is presented.

The notation used is standard. Knowledge of forcing, extenders, supercompact
cardinals, elementary embeddings and their iterations is assumed.

2. Preliminaries

Definition 2.1. Let j :V →M be an elementary embedding.

(1) For each α < j(µ) let λα be the minimal λ ≤ µ such that α < λα.
(2) For each α < j(µ) define E(α) by

∀A ⊆ µ
(
A ∈ E(α) ⇐⇒ α ∈ j(A)

)
.

It is well know that E(α) is a κ-complete ultrafilter over µ. Note that
E(α) concentrates on λα. Let iα :V → Nα ' Ult(V,E(α)) be the natural
elementary embedding from V to the ultrapower of V with E(α).
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(3) The extender E derived from j is the system

E = 〈〈E(α) | α < j(µ)〉, 〈πβ,α | α, β ∈ j(µ), α ∈ ran iβ〉〉,
where πβ,α :µ → µ is a function such that j(πβ,α)(β) = α. (α ∈ ran iβ
means there are many such functions. Any one of them will do as πβ,α.) We
assume that it is known how to construct i :V →M ' Ult(V,E). Moreover
we assume i = j. E.g., j is the natural embedding j :V → Ult(V,E).

We assume the theory of iterated ultrapowers is known and give only the def-
initions and proposition we need in order to get to the ω-iterate of V . Since j is
definable from a set parameter, terms of the forms j(j) have definite meaning.

Definition 2.2. Assume j :V →M is an elementary embedding. Define by induc-
tion for n < ω:

j0,1 = j, M0 = V,

and for each n < ω,

jn+1,n+2 = j(jn,n+1) :Mn+1 →Mn+2.

We ‘complete’ the list of j’s by setting for each n < m < ω,

jn,n = id,

jn,m = jm−1,m ◦ jn,m−1,
jn = j0,n.

We let Mω be the direct limit of the system 〈Mn, jn,m | n ≤ m < ω〉 with the limit
embeddings jn,ω for each n < ω.

Since the ultrapower is taken with measures constructed from α ≥ j(κ) we
cannot use, e.g., j1,ω(α) = α for α < j(κ). To emphasis this we present the
following lemmas (which are not needed in this work).

Lemma 2.3. Assume 0 < n < ω and x ∈ Mn. Then there are α0 < j(µ), . . . ,
αn−1 < jn(µ) and a function f : nµ→ V such that

x = jn(f)(j1,n(α0), j2,n(α1), . . . , jn,n(αn−1)).

Proof. It is immediate that for each x ∈ M there is α < j(µ) and a function
f :µ→ V in V such that j(f)(j1,1(α)) = j(f)(α) = x.

Assume x ∈ Mn+1. By elementarity there is αn < jn+1(µ) and a function
F : jn(µ) → Mn in Mn such that jn,n+1(F )(αn) = x. By recursion there are
α0 < j(µ), . . . , αn−1 < jn(µ) and a function g : nµ→ V in V such that

F = jn(g)(j1,n(α0), j2,n(α1), . . . , jn,n(αn−1)).

Hence we get

jn,n+1(F )(αn) =jn,n+1

(
jn(g)(j1,n(α0), j2,n(α1), . . . , jn,n(αn−1)

)
(αn) =

=jn+1(g)
(
j1,n+1(α0), j2,n+1(α1), . . . , jn,n+1(αn−1)

)
(αn),

which by defining f(ξ0, . . . , ξn) = g(ξ0, . . . , ξn−1)(ξn) yields

x = jn,n+1(F )(αn) = jn+1(f)(j1,n+1(α0), j2,n+1(α1), . . . ,

jn,n+1(αn−1), jn,n(αn)).

�
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Corollary 2.4. Assume x ∈ Mω. Then there are n < ω, ordinals α0 < j(µ), . . . ,
αn−1 < jn(µ) and a function f : nµ→ V such that

x = jn,ω(f)(j1,ω(α0), j2,ω(α1), . . . , jn,ω(jn,n(αn−1))).

Proof. Since Mω is the direct limit of the Mn-s, there is n < ω and xn ∈Mn such
that jn,ω(xn) = x. By the previous lemma there are α0 < j(µ), . . . , αn−1 < jn(µ)
and a function f : nµ→ V such that

xn = jn(f)(j1,n(α0), j2,n(α1), . . . , jn,n(αn−1)).

Applying jn,ω to both sides of the last equation we get

x = jω(f)(j1,ω(α0), j2,ω(α1), . . . , jn,ω(αn−1)).

�

3. The forcing

Assume the GCH, and let j :V →M be an elementary embedding such that M
is transitive, M ⊇ <µM , crit(j) = κ, µ is regular such that κ < µ ≤ j(µ), and if
µ = λ+ then cf(λ) ≥ κ. Let E be the extender derived from j.

The measures used by conditions in the forcing we will define are not on µ, but
on functions taking values in µ, a collection which we call OB(d). OB(d) is defined
so as to satisfy (j � d)−1 ∈ j(OB(d)), a fact which is proved immediately after the
definition.

Definition 3.1. Assume d ∈ [j(µ)]<µ and κ, |d| ∈ d. Then ν ∈ OB(d) ⇐⇒
(1) ν : dom ν → µ is a function such that dom ν ⊆ d;
(2) κ, |d| ∈ dom ν;
(3) |ν| ≤ ν(|d|);
(4) ∀α < j(µ) (j(α) ∈ dom ν =⇒ ν(j(α)) = α);
(5) ∀α ∈ dom ν ν(α) < λα;
(6) ∀α, β ∈ dom ν

(
α < β =⇒ ν(α) < ν(β)

)
.

On OB(d) the partial order < is defined by: ν0 < ν1 ⇐⇒
dom ν0 ⊆ dom ν1,

and

∀α ∈ dom ν0 \ j′′µ
(
ν0(α) < ν1(α)

)
.

Claim 3.2. Assume d ∈ [j(µ)]<µ and κ, |d| ∈ d. Then (j � d)−1 ∈ j(OB(d)).

Proof. Set f = (j � d)−1. We need to show the clauses of definition 3.1 hold for f
in the sense of M .

(1) f is a function with domain j′′d ⊆ j(d).
(2) Since κ, |d| ∈ d we get j(κ), j(|d|) ∈ j′′d, hence j(κ), j(|d|) ∈ dom f .
(3) |f | = |d| = f(j(|d|)).
(4) This clause is vacuous.
(5) Obvious.
(6) Obvious.

�

Definition 3.3. A condition f is in the forcing notion P∗E if f : d → <ωµ is a
function such that:
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(1) d ∈ [j(µ)]<µ;
(2) κ, |d| ∈ d;
(3) For each α ∈ d \ j′′µ there is k < ω so that

f(α) = 〈f0(α), . . . , fk−1(α)〉 ⊂ λα.
The forcing notion P∗E is equipped with the partial order f ≤∗P∗E g ⇐⇒ f ⊇ g.

(Thus 〈P∗E ,≤∗〉 is the Cohen forcing adding |j(µ)| subsets to µ).

Definition 3.4. (1) Assume T ⊆ OB(d)<ξ (1 < ξ ≤ ω). Then for each n < ξ,

Levn(T ) = {〈ν0, . . . , νn〉 ∈ OB(d)n+1 | 〈ν0, . . . , νn〉 ∈ T},

and

SucT (ν0, . . . , νn−1) = {λ ∈ OB(d) | 〈ν0, . . . , νn−1, λ〉 ∈ T}.
For notational convenience let SucT (〈〉) = Lev0(T ). Assume 〈ν〉 ∈ T .
Define

T〈ν〉 = {〈ν0, . . . , νk−1〉 | k < ω, 〈ν, ν0, . . . , νk−1〉 ∈ T},
and by recursion when 〈ν0, . . . , νn〉 ∈ T define

T〈ν0,...,νn〉 = (T〈ν0,...,νn−1〉)〈νn〉.

(2) A measure E(d) is defined on OB(d) as follows:

∀X ⊆ OB(d)
(
X ∈ E(d) ⇐⇒ mc(d) ∈ j(X)

)
,

where mc(d) is defined by

mc(d) = {〈j(α), α〉 | α ∈ d}.

The measure E(n+1)(d) (n < ω) on OB(d)n+1 is defined by recursion as
follows.

X ∈ E(n+1)(d) ⇐⇒

{〈ν0, . . . , νn−1〉 ∈ Levn−1(X) | SucX(ν0, . . . , νn−1) ∈ E(d)} ∈ E(n)(d),

where we set E(0) = {〈〉} and consider it a measure on OB(d)0 = {〈〉}.
Note that essentially E(1)(d) = E(d). The measure E(ω)(d) on OB(d)<ω is
defined by recursion as follows:

X ∈ E(ω)(d) ⇐⇒ ∀n < ω Levn(X) ∈ E(n+1)(d).

(3) A set T ⊆ OB(d)<ξ (1 < ξ ≤ ω) ordered by end-extension is called a tree
if it is closed under initial segments. A tree T ⊆ OB(d)<ω is called an
E(d)-tree if for each 〈ν0, . . . , νn−1〉 ∈ T we have νk−1 < νk (k < n), and

∀〈ν0, . . . , νn−1〉 ∈ T SucT (ν0, . . . , νn−1) ∈ E(d).

Note that if T is an E(d)-tree then T ∈ E(ω)(d). Hence for each n < ω,
Levn(T ) ∈ E(n+1)(d). Note also that if T is a tree such that T ∈ E(ω)(d),
then we can find a subtree S ⊆ T such that S is an E(d)-tree.

(4) For a function f ∈ P∗E we write OB(f), E(f), and mc(f), for OB(dom f),
E(dom f), and mc(dom f), respectively.

Definition 3.5. A condition p in the forcing notion PE is of the form 〈f,A〉, where:

(1) f ∈ P∗E ;
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(2) A is an E(f)-tree.

We write fp, Ap, and mc(p), for f , A, and mc(f), respectively.

Note that if d1 ⊆ d2 then a function OB(d2)→ OB(d1) defined by

A 7→ {ν � d1 | ν ∈ A}

is a projection of E(d2) to E(d1), thus the following definition makes sense.

Definition 3.6. Let p, q ∈ PE . We say that p is a Prikry extension of q (p ≤∗PE q)
if:

(1) fp ≤∗P∗E f
q;

(2) {〈ν0 � dom fq, . . . , νn−1 � dom fq〉 | n < ω, 〈ν0, . . . , νn−1〉 ∈ Ap} ⊆ Aq.

Definition 3.7. Let f ∈ P∗E and ν ∈ OB(dom f) be such that ν(κ) > max f(κ).
Define f〈ν〉 ∈ P∗E to be a function g ∈ P∗E with domain dom f satisfying for each
α ∈ dom g,

g(α) =

{
f(α)_〈ν(α)〉 α ∈ dom ν and

(
ν(α) > max f(α) or α ∈ j′′µ

)
,

f(α) Otherwise.

Assume 〈ν0, . . . , νn−1〉 ∈ OB(f)n is such that max f(κ) < ν0(κ), and νi < νi+1 for
each i < n− 1. Define f〈ν0,...,νn−1〉 recursively as (f〈ν0,...,νn−2〉)〈νn−1〉.

Let p ∈ PE and 〈ν0, . . . , νn−1〉 ∈ Ap be such that max fp(κ) < ν0(κ), and
νi < νi+1 for each i < n − 1. Define p〈ν0,...,νn−1〉 ∈ PE to be the condition
〈fp〈ν0,...,νn−1〉, A

p
〈ν0,...,νn−1〉〉 ∈ PE .

Whenever the notation 〈ν0, . . . , νn−1〉 is used, where νk ∈ OB(d) (k < n), it is
implicitly assumed that νk−1 < νk (k < n).

Definition 3.8. Assume p, q ∈ PE . We say that p is an extension of q (p ≤PE q)
if there is 〈ν0, . . . , νn−1〉 ∈ Aq such that

p ≤∗PE q〈ν0,...,νn−1〉.

Note that if p, q ∈ PE are conditions such that fp ‖P∗E fq, then p ‖PE q. Thus

an anti-chain in PE induces an anti-chain in P∗E . Since 〈P∗E ,≤∗〉 has the µ+-cc, the
following is immediate.

Claim 3.9. The forcing PE has the µ+-cc.

The following claim is immediate since crit j = κ and M ⊃ κM .

Claim 3.10. 〈PE ,≤∗〉 is κ-closed.

The following lemma, merging subtrees into a tree, is immediate. It is used in
the proof of claim 3.12 as a replacement for diagonal intersection of sets.

Lemma 3.11. Assume p ∈ PE, and for each n < ω and 〈ν0, . . . , νn−1〉 ∈ Ap there is
a tree T (ν0, . . . , νn−1) ⊆ Ap〈ν0,...,νn−1〉 such that 〈fp〈ν0,...,νn−1〉, T (ν0, . . . , νn−1)〉 ∈ PE.
Then there is a condition p∗ ≤∗PE p such that fp

∗
= fp, and for each n < ω and

〈ν0, . . . , νn−1〉 ∈ Ap
∗
,

p∗〈ν0,...,νn−1〉 ≤
∗
PE 〈f

p
〈ν0,...,νn−1〉, T (ν0, . . . , νn−1)〉.
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Claim 3.12. Assume p ∈ PE and D ⊆ PE is dense open. Then there are a
condition p∗ ≤∗PE p and n < ω such that

∀〈ν0, . . . , νn−1〉 ∈ Ap
∗
p∗〈ν0,...,νn−1〉 ∈ D.

Proof. Let χ be large enough.
First step. The first step in the proof is the construction of an elementary

submodel N ≺ Hχ and a condition f∗ ≤∗ fp such that |N | < µ, N ∩µ ∈ On,
N ⊃ N<κ, p,PE , D ∈ N , f∗ ∈

⋂
{D ∈ N | D is a dense open subset of P∗E

below fp}, and f∗ ⊂ N .
Observe that for a set X such that |X| < µ there is an elementary submodel

N ≺ Hχ such that |N | < µ, N ⊇ X, N ∩µ ∈ On, and N ⊃ N<κ. (If µ = λ+ then
we need that cf λ ≥ κ in order for the previous sentence to be correct).

The construction of N and f∗ is done by induction of length κ where in each step
ξ < κ of the induction a pair 〈Nξ, fξ〉 is constructed so that Nξ ≺ Hχ, |Nξ| < µ,
Nξ ∩µ ∈ On, Nξ ⊃ N<κ

ξ , Nξ1 ⊆ Nξ2 (ξ1 < ξ2 < κ), fξ2 ≤∗ fξ1 (ξ1 < ξ2 < κ), fξ ∈
Nξ+1, fξ ⊂ Nξ+1, and fξ ∈

⋂
{D ∈ Nξ | D is a dense open subset of P∗E below fp}.

(As can be seen, each pair 〈Nξ, fξ〉 satisfies almost all the demands for being 〈N, f∗〉.
The one thing which might fail is fξ ⊂ Nξ.) The induction is carried as follows.

• ξ = 0: Let N0 ≺ Hχ be an elementary submodel such that |N0| < µ,
N0 ⊃ N<κ

0 , and p,PE , D ∈ N0. Choose a condition f0 ≤∗ fp such that
f ∈

⋂
{D ∈ N0 | D is a dense open subset of P∗E below fp}.

• 0 < ξ < κ: Let Nξ ≺ Hχ be an elementary submodel such that |Nξ| < µ,
Nξ ⊃ N<κ

ξ , Nξ ⊃
⋃
ξ′<ξNξ′ ,

⋃
ξ′<ξ fξ′ ∈ Nξ, and Nξ ⊃

⋃
ξ′<ξ fξ′ . Pick a

condition fξ ∈
⋂
{D ∈ Nξ | D is a dense open subset of P∗E below fp} such

that fξ ≤∗
⋃
ξ′<ξ fξ′ .

When the induction terminates set N =
⋃
ξ<κNξ and f∗ =

⋃
ξ<κ fξ. It is trivial

to verify that all the demands specified in the beginning of the proof are satisfied
by the pair 〈N, f∗〉. With N and f∗ at our disposal we proceed to the second step
of the proof.

Second step. Let A be a tree such that 〈f∗, A〉 ≤∗ p. Since
(
j(N) ⊃

<j(κ)
j(N)

)
M

and N ⊃ {κ}∪dom f∗ we deduce that mc(f∗) ∈ j(N). Thus by
removing a measure zero set from A we can ensure that A ⊂ N . For each k < ω
and 〈ν0, . . . , νk−1〉 ∈ A set

D〈ν0,...,νk−1〉 = {f ≤∗ fp | ∃T 〈f〈ν0,...,νk−1〉, T 〉 ∈ D or

∀g ≤∗ f ∀T 〈g〈ν0,...,νk−1〉, T 〉 /∈ D}.

For each 〈ν0, . . . , νk−1〉 ∈ A the set D〈ν0,...,νk−1〉 is a dense open subsets of P∗E
below fp, and since A ⊂ N these sets are in N . Thus f∗ ∈ D〈ν0,...,νk−1〉 for each
〈ν0, . . . , νk−1〉 ∈ A. That is, for each k < ω and 〈ν0, . . . , νk−1〉 ∈ A either

∃T 〈f∗〈ν0,...,νk−1〉, T 〉 ∈ D,

or

∀g ≤∗ f∗ ∀T 〈g〈ν0,...,νk−1〉, T 〉 /∈ D.

Third step. We claim there is n < ω and X ∈ E(n)(f∗) such that for each
〈ν0, . . . , νn−1〉 ∈ X there is a tree T such that 〈f∗〈ν0,...,νn−1〉, T 〉 ∈ D. Towards a
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contradiction assume that this is not the case. Then there is Y ∈ E(ω)(f∗) such
that for each k < ω and 〈ν0, . . . , νk−1〉 ∈ Y ,

∀g ≤∗ f∗ ∀T 〈g〈ν0,...,νk−1〉, T 〉 /∈ D.

Let p∗ ≤∗ p be a condition such that fp
∗

= f∗ and Ap
∗ ⊆ Y . Since D is dense

open, there is a condition q ∈ D such that q ≤ p∗. By the definition of the order
≤PE there is k < ω and 〈ν0, . . . , νk−1〉 ∈ Ap

∗
such that q ≤∗ p∗〈ν0,...,νk−1〉. Set

g = f∗ ∪
(
fq � (dom fq \ dom f∗)

)
. A contradiction is derived by noting that

g ≤∗ f∗ and 〈g〈ν0,...,νk−1〉, A
q〉 = q ∈ D.

Fourth step. Fix n < ω and X ∈ E(n)(f∗) such that for each 〈ν0, . . . , νn−1〉 ∈
X there is a tree T (ν0, . . . , νn−1) such that 〈f∗〈ν0,...,νn−1〉, T (ν0, . . . , νn−1)〉 ∈ D. By

3.11 there is a condition p∗ ≤∗ 〈f∗, A〉 such that for each 〈ν0, . . . , νn−1〉 ∈ Ap
∗
,

p∗〈ν0,...,νn−1〉 ≤
∗ 〈f∗〈ν0,...,νn−1〉, T (ν0, . . . , νn−1)〉.

Since the set D is open we get that for each 〈ν0, . . . , νn−1〉 ∈ Ap
∗
,

p∗〈ν0,...,νn−1〉 ∈ D.

�

Definition 3.13. Assume G ⊂ PE is generic. For each α < j(µ) set

Gα =
⋃
{fp(α) | p ∈ G, α ∈ dom fp}.

Note that for α < µ, the tail of Gj(α) looks like 〈α, α, . . .〉. Let 〈Gαn | n < ω〉 be the
increasing enumeration of Gα. Let G˜ α and G˜ αn be the PE-names of Gα and Gαn,

respectively.

Claim 3.14. Assume λ ∈ [κ, µ) and sup j′′λ < j(λ). Then Gsup j′′λ is an ω-
sequence unbounded in λ.

Proof. Fix λ ∈ [κ, λ) such that α = sup j′′λ < j(λ). Assume τ < λ. Then
j(τ) < α, hence α ∈ (j(τ), j(λ)), i.e., (τ, λ) ∈ E(α). Thus if A ∈ E(fp) then
{ν ∈ A | ν(α) > τ} ∈ E(fp). Fix a condition p ∈ PE such that α ∈ dom fp. Set

A∗ = 〈〈ν0, . . . , νn〉 ∈ Ap | n < ω, ν0(α) > τ〉.

Then p∗ = 〈fp, A∗〉 is a Prikry extension of p, and for each n < ω and 〈ν0, . . . , νn〉 ∈
Ap
∗
,

p∗〈ν0,...,νn−1〉 
PE “G˜ α|fp(α)| > τ”.

I.e., p∗ 
PE “G˜ α|fp(α)| > τ”. �

Since for a V -regular cardinal λ ∈ (κ, µ) we have sup j′′λ < j(λ), we conclude
that λ is collapsed. Thus we get:

Claim 3.15. All V -cardinals in (κ, µ) are collapsed in a PE-generic extension.

The following is the basic observation regarding the sequences Gα. It is imme-
diate from the definition of the sequences Gα and  Loś theorem.
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Claim 3.16. Assume p ∈ PE and α < j(µ). Then there is a condition p∗ ≤∗PE p
such that for each n < ω,

jω(p∗)〈j1,ω(mc(p∗)),...,jn+1,ω(jn(mc(p∗)))〉 
jω(PE)

“jω(G˜ α|fp∗ (α)|+n) = jn+1,ω(jn(α))”.

Proof. Set n0 = |fp(α)|. Note that for each n < n0, p 
PE “G˜ αn = fpn(α)”.

Construct by induction a ≤∗PE -decreasing sequence of conditions as follows. Set
p0 = p. Assume pn was constructed. Construct pn+1 as follows. Let

Dn = {q ≤PE p | ∃ξ q 
PE “G˜ αn0+n = ξ̌”}.

By 3.12 there is a Prikry extension pn+1 ≤∗PE pn and k < ω such that

∀〈ν0, . . . , νk−1〉 ∈ Apn+1 pn+1〈ν0,...,νk−1〉 ∈ D.
Note that since D is open we can make k larger than n. Thus we get by the
definition of the forcing notion

∀〈ν0, . . . , νn〉 ∈ Apn+1 pn+1〈ν0,...,νn〉 
PE “G˜ αn0+n = νn(α)”.

Going to the n+ 1 ultrapower we get

jn+1(pn+1)〈j1,n+1(mc(pn+1)),...,jn+1,n+1(jn(mc(pn+1)))〉 
jn+1(PE)

“jn+1(G˜ αn0+n) = jn(α)”.

And sending to Mω yields

jω(pn+1)〈j1,ω(mc(pn+1)),...,jn+1,ω(jn(mc(pn+1)))〉 
jω(PE)

“jω(G˜ αn0+n) = jn+1,ω(jn(α))”.

When the induction terminates choose a condition p∗ such that for each n < ω,
p∗ ≤∗PE pn. We get for each n < ω,

jω(p∗)〈j1,ω(mc(p∗)),...,jn+1,ω(jn(mc(p∗)))〉 ≤∗PE
jω(pn+1)〈j1,ω(mc(pn+1)),...,jn+1,ω(jn(mc(pn+1)))〉,

by which we get

jω(p∗)〈j1,ω(mc(p∗)),...,jn+1,ω(jn(mc(p∗)))〉 
jω(PE) “jω(G˜ αn0+n) = jn+1,ω(jn(α))”.

�

Observe that the sets {jn+1,ω(jn(α)) | n < ω} and {jn+1,ω(jn(β)) | n < ω} are
disjoint, where α < β < j(µ). Thus the sequences Gα and Gβ are tail-disjoint.
Thus in V [G], |{Gα | α < j(µ}| = |j(µ)|.

Claim 3.17. In V [G], 2κ ≥ |j(µ)|.

Definition 3.18. A triple 〈P,≤,≤∗〉 is called a Prikry type forcing notion if

(1) 〈P,≤〉 and 〈P,≤∗〉 are forcing notions;
(2) ≤∗⊆≤;
(3) For each σ a formula in the 〈P,≤〉-forcing language, and a condition p ∈ P,

there is a condition p∗ ≤∗ p such that p∗ ‖〈P,≤〉 σ.

Corollary 3.19. 〈PE ,≤,≤∗〉 is a Prikry type forcing notion.
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Proof. Assume σ is a formula in the PE-forcing language, and p ∈ PE . Set

D = {q ∈ PE | q ‖PE σ}.

Trivially, D is a dense open subset of PE . By 3.12 there are a condition p′ ≤∗PE p
and n < ω such that

∀〈ν0, . . . , νn−1〉 ∈ Ap
′
p′〈ν0,...,νn−1〉 ∈ D.

That is

∀〈ν0, . . . , νn−1〉 ∈ Ap
′
p′〈ν0,...,νn−1〉 ‖PE σ.

Set

T0 = {〈ν0, . . . , νn−1〉 ∈ Ap
′
| p′〈ν0,...,νn−1〉 
PE ¬σ},

and

T1 = {〈ν0, . . . , νn−1〉 ∈ Ap
′
| p′〈ν0,...,νn−1〉 
PE σ}.

Since Levn−1(Ap
′
) ∈ E(n)(mc(p′)), T0 ∩T1 = ∅, and Levn−1(Ap

′
) = T0 ∪T1, we

have either T0 ∈ E(n)(mc(p′)) or T1 ∈ E(n)(mc(p′)). Set i < 2 so that Ti ∈
E(n)(mc(p′)). Let

T = {〈ν0, . . . , νk−1〉 ∈ Ap
′
| k < ω, 〈ν0, . . . , νn−1〉 ∈ Ti}.

Set p∗ = 〈fp′ , T 〉. Then either

∀〈ν0, . . . , νn−1〉 ∈ Ap
∗
p∗〈ν0,...,νn−1〉 
PE ¬σ

or

∀〈ν0, . . . , νn−1〉 ∈ Ap
∗
p∗〈ν0,...,νn−1〉 
PE σ.

Since {p∗〈ν0,...,νn−1〉 | 〈ν0, . . . , νn−1〉 ∈ Ap
∗} is a maximal anti-chain below p∗, we

have either p∗ 
PE ¬σ or p∗ 
PE σ. �

Claim 3.20. The cardinal µ is preserved in a PE-generic extension.

Proof. Since all the cardinals in (κ, µ) are collapsed and cfV
PE

(κ) = ω, collapse of

µ means that cfV
PE

(µ) < κ.

Assume p 
PE “ḟ : λ̌ → µ̌”, where λ < κ. We will exhibit a condition p∗ ≤∗PE p

forcing that ḟ is bounded in µ. For each ζ < λ set Dζ = {q ≤PE p | ∃ξ < µ q 
PE
“ḟ(ζ̌) = ξ̌”}. Since the sets Dζ are dense open subsets of PE below p, we can
construct by induction, using 3.12, the ≤∗-decreasing sequence 〈pζ | ζ < λ〉 and the
sequence 〈kζ < ω | ζ < λ〉 satisfying p0 = p, and for each ζ < λ,

∀〈ν0, . . . , νkζ 〉 ∈ Ap
ζ+1

∃ξ < µ pζ+1
〈ν0,...,νkζ 〉


PE “ḟ(ζ̌) = ξ̌”.

Choose a condition p∗ such that for each ζ < λ, p∗ ≤∗PE p
ζ . Now we have for each

ζ < λ,

∀〈ν0, . . . , νkζ 〉 ∈ Ap
∗
∃ξ < µ p∗〈ν0,...,νkζ 〉


PE “ḟ(ζ̌) = ξ̌”.

For each ζ < λ define a function Fζ : Levkζ (A
p∗)→ µ so that

∀〈ν0, . . . , νkζ 〉 ∈ Ap
∗
p∗〈ν0,...,νkζ 〉


PE “ḟ(ζ̌) = F̌ζ(ν0, . . . , νkζ )”.
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Set µ∗ = sup{Fζ(ν0, . . . , νkζ ) | ζ < λ, 〈ν0, . . . , νkζ 〉 ∈ Ap
∗}. By its definition,

p∗ 
PE “ ran ḟ ⊆ µ̌∗”. Since the sup is taken over a set of size less than µ, and µ is
regular we get µ∗ < µ. �

Theorem 3.21. Assume G ⊂ PE is generic. Then in V [G]:

(1) V and V [G] have the same bounded subsets of κ, and thus κ and all the
cardinals below it are preserved.

(2) All cardinals in (κ, µ) are collapsed, and cfV [G] κ = ω.
(3) All the cardinals ≥ µ are preserved.
(4) 2κ = |j(µ)|.

Proof. (1) The Prikry property of 〈PE ,≤,≤∗〉 (3.19), together with the κ-
closure of 〈PE ,≤∗〉 (3.10), yield that V and V [G] have the same bounded
subset of κ.

(2) Fix a V -regular cardinal λ ∈ [κ, µ). By simple density argument, Gsup j′′λ

is an ω-sequence unbounded in λ. Thus cfV [G] λ = ω. Since all the regular
cardinals in (κ, µ) are collapsed, so are the singulars in the range.

(3) By the µ+-cc of PE (3.9) all the cardinals above µ are preserved, and µ is
preserved by 3.20.

(4) On the one hand, the µ+-cc together with |PE | ≤ |j(µ)| imply 2κ ≤ |j(µ)|.
On the other hand, 3.17 gives 2κ ≥ |j(µ)|.

�
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