THE SHORT EXTENDERS GAP TWO FORCING IS OF PRIKRY
TYPE

CARMI MERIMOVICH

ABSTRACT. We show that Gitik’s short extender gap-2 forcing is of Prikry
type.

1. INTRODUCTION

In [5] a forcing notion blowing up the powerset of a cardinal k carrying an
extender together with changing x’s cofinality to w in one step was introduced.
The size of the powerset in the generic extension was set to the size of the extender.
It was felt at the time that this is the optimal assumption. That is, if one begins
with a model for x of cofinality w with large powerset, then in the core model
one should find an extender on s of the powerset size. Going this way [6] and [3]
assumed 2% > A and found, quite unexpectedly, two possibilities. One possibility
was indeed that in the core model the cardinal k carries an extender of the size
2%. The other possibility, however, was that in the core model the cardinal « is a
singular cardinal of cofinality w, and there is an increasing sequence of cardinals
Ky, with limit k each carrying a rather short extender. In the sequence of papers
[1, 2, 3] Gitik showed that indeed this other possibility can be used to blow up the
powerset of k.

Gitik presented his forcing notions in the TAU set theory seminar of the year
2007 from which the notes [7, 4] grew out. We thank the participants of the seminar
Eilon Belinski, Omer Ben-Naria, Assaf Ferber, Assaf Rinot, and Liad Tal. Of course
we thank Moti Gitik for the organization, presentation, and for being rather patient
with the enormous amount of questions he had to answer by phone, email, and in
person.

In this paper we reprove the following.

Theorem (M. Gitik [1]). Assume (k, | n < w) is an increasing sequence of car-
dinals such that for each n < w there is a (ky, k" "?) extender. Let k= J,, ., fin-
Then there is a cardinal preserving generic extension adding no new bounded subsets
to K such that 2° = kT,

In case somehow it was not clear until now, we stress that the forcing notion
presented is due to Gitik. The new feature we present is that the forcing notion is
of Prikry type with the Prikry order being closed enough so it is useful. We present
all details, thus the paper is self contained assuming one knows forcing and large
cardinals theory. Our plan is to fit in the wider gap short extender forcing notions
into this framework hopefully gaining the Prikry property.
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2. GAP-2 FORCING

Assume k = J,,,, kn, Where (k, | n < w) is an increasing sequence of cardinals.
Furthermore, assume that for each n < w there is an elementary embedding j, :
V — M, such that M, is transitive, crit(j,) = &n, M, 2 MF, and j,(kn) >
k"2 Let E, be the (k,, k" ?)-extender derived from j,. Without loss of
generality assume that j, is the natural embedding from V to Ult(V, E,,) ~ M,.

We write S)) to denote the set {£ < A | cf & = pu}.

Definition 2.1. The following list of points leads to the definition of the forcing
notion (P, <p) and its Prikry order <;. We begin with the definition of the universe
for measures, continue with structures and then get to the relevant measures.

e Assume d € [S:i+]<“". The set OB,,(d) is composed of the order preserving
functions v : d — Ky, \ kn—1. (Consider k_; to be 0).

e For the duration of the current section fix for each n < w a cardinal x,, < k large
relative to k,. Assume k < n < w. Define the following structure.

%7’? = <H(Xj;k)7 €7EnaA7§>

AeVi,, +1, §<nj{k"
Instead of using x;* in the above definition any sequence (x, % | k¥ < n) having
the property H(xn,k) € H(Xn,k+1) could have been used.
e An elementary submodel N < J7, ;, codes an ordinal o < K2 if o = NN
k"2 |IN| = k17 and N D N<5». We use N to denote the ordinal NNk;m+2,
e A family of elementary submodels = codes an element of [r " +2]<Ffn if:
(1) |z| < kp.
(2) For each N € x there is k < n such that N < %, ; codes an ordinal < ;" 2.
(3) For each Ny, Ny € x such that N7 # No, N, + No.
(4) If Nl,NQ cx, Ny < %,kJrl, and Nl < NQ, then Ny ﬂ%’k € No.
We set & = {N | N € z}.
e Assume d € [S:TF”" and a : d — H(x,;/*) is a function such that rana codes
an element of [k +2]<rn,
— The function @ : d — &} *2 is defined by a(a) = a(a) N k"2
— The measure E,(a) is defined on OB,,(d) as follows:
VX COB,(d) (X € Ey(a) <= {{jn(a),d(a)) | a € d} € jun(X)).

++

e Assume e C d € [S", |5 and X C OB, (d). Then

Xle={v]e|lveX}

For finite products define: If (d,, | | < n < m) is C-increasing, e C Ulgngm dp,
and X C Hzgngm OB,.(d,) then
Xle={{wle...,unle)|{v,...,vn) € X}
We define now the Cohen part P* of the forcing notion IP. It will consists of « initial
segments of Prikry sequences to be generated.
e A condition f is in the forcing notion P* if f : d — <“k is a function such that:
(1) de[sT]=".
(2) For each a € d, f(a) = (fn, (@), ..., frs—1(a)) € [],,, <o, fin 1s an increas-
ing sequence, where n; < ny < w and n; and ns depend on .

The forcing notion P* is equipped with the partial order f <. ¢ < f 2 g.
(Thus (P*, <*) is the Cohen forcing adding ~** subsets to £™).
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Finally we define the forcing notion IP and its two orders <j and <p.

e A condition p = (f,a, A) is in the forcing notion P if there is | < w such that:
(1) febp
(2) a={an:d, — H(x;*) |l <n < w) is a sequence of functions such that:
( ) Ul<n<w - dOIIlf
(2.2) (dn |l <n <w) is C-increasing.
(2.3) For each | <n <w, |dy| < Kp.
(3.1)

For each | < n < w, a, codes an increasing sequence (a,(a) | & € dp,)
+n+2

3)

of ordinals in ;!
(3.2) Assume a € dom f, and let | < n* < w be minimal such that a €
dp~. Furthermore, assume that for each n* < n < w, ap(a) < 4, i,
Then U,,. <, <., kn = w, and the sequence (k, | n* < n < w) is non-
decreasing.
(4) A= (A, |l <n<w)and for each | <n < w, A, € E,(a,).
We write [P, fP, aP, AP, aP, AP, and Lev,,(p), for I, f, a, A, a,, A,, and
Hl<n<l+m An, respectlvely
e Let p,q € P. The condition p is a Prikry extension of ¢ (p <} ¢) if:
(1) f?<p. fa.
(2) 1P =19 (we use [ to denote the common value).
(3) Foreach !l <n < w:
(3.1) a® D al.
(3.2) doma? \ doma? C dom fP \ dom f1.
(3.3) A2 | domal C AJ.
Note that the Prikry order is quite closed as stated in claim 2.2.

e Assume f € P*, v € OB,(d), where d € [dom f]<"». Define the condition
fwy € P* to be the function g € P* with domain dom f satisfying for each
a € dom g,

) fl@) " (v(a)) a€cdomy, v(a)>max f(a),
9le) = {f(oz) Otherwise.

Assume (v, ..., Vm-1) € [[;<,cm OBn(dyn) where d,, € [dom f]<"~. Define the
condition f,, . ., .y € P* recursively as (fi,, .. v o)) (vm_1)-

e Assume p € P. By writing (v, ..., vp—1) € AP we mean that (vp,...,v,_1) €
LeVn_lp_l(p). B

e Assume p € P and (vpp,...,Vm_1) € AP. By a<m AAAA vy and APVW’MVWH1> we
mean the sequences (a? | m <n < w) and (A2 | m <n < w), respectlvely

e Assume p € P and (v) € AP. Define the condition p(,, € P to be <f< Ap >

e Assume p € P and (v,...,v,_1) € AP. Define recursively Pl vm_1) E ]P’ to be
the condition (pe,,....v._)) w1y € P

The natural way to define the forcing order would have been to extend a condition
p to a Prikry extension of p(,, ., ). Alas, this definition collapses £*7. In order
to restrict the length of the anti-chains, we identify conditions with different a’s.
This is done according to the types of the a’s defined as follows.

o Assume k < n < w and x € S, . The (n, k)-type of z is defined to be the
set of formulae with one free parameter holding in the structure ¢, , for the
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assignment z, i.e.,

P (@) = { 0(=)" | Ak E ()}
We will be interested in the types of sets in [k "+2]<%». A type will be coded
by an ordinal. Le., tp,, ,(z) € #7F+1 Hence for k < n there are constants in the
language of the structure J#, 11 for the J7, p-types.

e Assume p,qg € P. We say that p is an extension of ¢ (p <p gq) if there is
(Via,...,vw_1) € A9, and a non-decreasing sequence (k, < n | I? < n < w),
such that:

(1) fP <p fgl’quu,vzpfﬁ'
(2) UlP§n<w kn = w.
(3) For each I? <n < w:
(3.1) domaP O domal.
(3.2) doma? \ doma? C dom f? \ dom f?.
(3.3) AP | domal C AY.
(3.4) tp,, ., (ran(@? | domag)) = tp, ., (ran ag).

Let us specify two properties of the order <p which are not obvious at once.

It can happen that two conditions satisfy both p <p g and f? <j. f9 but p £} ¢.
That is changing only the values of the a,,’s while keeping their types is a non-Prikry
extension. This allows the Prikry order to be closed.

Another fact is as follows. Suppose p = (f,a, A), ¢ = (f,b, A), and P = 19 = [.
Moreover, assume that tp,, , (randa,) = tp,, j, (ran by) for each n* < n < w, where

I <n* <w. Assume that for each | < n < n*, tp, o(rana,) # tp,, o(ran b,) while
E,(an) = E,(by). According to the definition of the order < we have both p £ ¢
and ¢ £ p. The basic observation of the current work is that p I+ “G € G” and
q IF “p € G7. That is, while the conditions p and ¢ are incomparable, from the
forcing point of view they are equivalent. This is due to the following. Suppose
G C Pisgenericand p € G. Since {p(y,,...v,. ) | V1, s vne1) € A} is a maximal
antichain below p, there is (v, ..., vp+—1) € A such that p(,, ., . .y € G. By the
definition of the order <p we have pi, ... ) < Quovne ) < ¢ Thus ¢ € G
and we proved that p IF “¢ € G”. The same argument with p and ¢ interchaged
will show that ¢ IF “p € G”.
We state the exact closure properties of the Prikry order.

Claim 2.2. (1) Assume (pe | € < A < Kpo) is a <*-decreasing sequence. Then
there is a condition p* such that for each & < A, p* <* pe.

(2) Assume (pe | £ < X\ < k=) is a <*-decreasing sequence, and for each & < & <
Nand P <n <n*, ab® =ab and AV = ALY Then there is a condition p*
such that for each & < A, p* <* pe.

The following claim shows that in the generic extension there is an w-sequence
for each a € S;:fr. It is a bit stronger than what is actually needed since it also
shows that we can control the initial segments of xk-many sequences at once.

Claim 2.3. Assume p € P is a condition and g <* fP. Then there is a Prikry
extension p* <* p such that fp* =g.

Proof. Set | = IP. The proof is done is three stages. In stage I we show how to
extend fP to fP U {{a, g(a))} ensuring on the way that this can be done without
changing a,, and A4,, (P < m < n*) for any [ < n* < w. In stage II we show how
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to extend fP with less than x-many ordinals. Finally, in stage III we show how
extend fP to an arbitrary g.

Stage I. Assume g\ f? = (a,g(a)). Set f» = g and fix some [ < n* < w. The
construction of @ and AP" is done according to the whereabouts of o

(1) For each § € dom fP, o > f: The construction is by induction. Begin by
setting for each I <n < n*, af =a? and A? = AP,

The inductive step is done as follows. Assume aflil and Af;l, where n* <
n < w, have been constructed. Choose an elementary submodel N < J7, ,
coding an ordinal in ;7”2 such that for each 8 € doma?, a®(3)N#;, -1 € N.
Then set a? (o) = N, and a? | doma?, = a?.. Now choose AP" € E, (a? ) such
that A’,’: [ doma? C AP.

(2) There is v € dom fP such that o < 4: Let v € dom fP be minimal such that
a < 7. Let n* < m < w be minimal such that max g(a) < &, v € doma?,,
and a?, () < 4, k+2. The construction of a”" and A" is by induction. Begin
by setting for each | <n < m, a? = a? and AP = AP,

The inductive step is done as follows. Assume that aflil and Aﬁil, where

m < n < w, have been constructed. Choose an elementary submodel N <

H, 141 coding an ordinal in £,"*? such that N € a(v), and for each 3 €

doma?. N, a?(B) N, ). € N. Then set a?, (o) = N, and a? | af, = af. Now
choose AP € E,,(a?’) such that A2" | domaP, C AP.

Stage II. Let (a¢ | £ < A < k) be an enumeration of domg \ dom f?. Let

l < n* < w be minimal such that k., > A. Construct by induction, using stage I

and 2.2, the <*-decreasing sequence of conditions (pg | £ < \) satisfying:

(1) po =p.

(2) For each & < A, fPe+t = fPe U {(ag, g(ag))}

(3) For each § < & < Aand I <n <n*, abfo = bt and APfo = Absr

We are done by setting p* = pa.

Stage IIIL. Let (¢ | £ < k) be an enumeration of domg \ dom fP. For each

I <n <wlet g, C g be a function such that |g,| < Ky, {domg, |l <n < w} is

a set of mutually disjoint sets, and g = |J,,, ., gn- Construct by induction, using

stage IT and claim 2.2, a <*-decreasing sequence (p, | | < n < w) such that p; = p,

and for each [ <n < w, fPr+t = fPn Ug,. We are done by setting p* = p,,. (]

In view of claim 2.3 the following definition makes sense.

Definition 2.4. Assume G C P is generic. For each a € S:fr set

G = J{f"(@) | p€G, acdom fr}.
Let G be a shift of G** satisfying G* € [[, _., fin-

n<w VN
It is immediate that (G* | « € SST) is increasing, thus we have:
Corollary 2.5. (In V[G]) 2% > |(kTH)V].

The following claim is the crux of the matter. It connects the forcing order < with
the Prikry order <*. The best option would have been to have p <* qu,4.....vip_1)
if p < g. This however fails in the current definition. We can resurrect it but loose
the closedness of the Prikry order. The following claim shows that we almost have
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Viq,..,Vip —1

the best option. Just instead of getting that p <* ¢
condition p* < p for which p* <* ¢

y» we have a stronger
Va5V p* )
Claim 2.6. Assume p,q € P are conditions such that p < q. Then there is a
stronger condition p* < p and a sequence (Vja,...,Vpr_1) € A? such that p* <*
q<l”'q""7”lp*_1>'
Proof. Let (vja,...,up_1) € A% and (k, < n | [P < n < w) witness that p is
an extension of ¢. Let [P < n* < w be minimal such that k, > 0, and choose
(twy s pn=—1) € AP. Observe that (up [ dom f9,..., puy«—y [ dom f9) € A%

Construct @ and A by doing the following for each n* < n < w. Set A, = AP.
Set T = tp,, 1, _1(ranak). The set {N NI, 1, 1 | N € ranal} witnesses

ok, E 3z C A, K, -1 (x Dran(al [ domal) A tpmkn_l(ﬁ:) = 7').

Since tp,, j, (ran(a}, [ domad)) = tp,, ;, (ranad),

ok, F 3T C I, 1 -1 (x Dranal A tpnykn_l(a":) = 7').

Now let z C J#, x, -1 be a set satisfying D ranag and tp,,; () = 7. Set

an to be the function with domain doma? and rana, = z satisfying for each
a,B € domal, if a < 3 then a,(a) < an(B).
Set p* = <f<pmp o *71>,c‘1,A>. Then p* < p and

k%
P =" Qg vip 1w [dom £9,.. iy g [dom f3) -

The following technical lemma is used in stage I of the proof of 2.8.

Lemma 2.7. Assume p € IP is a condition and ¢ <* p,
a Prikry extension p* <* p such that pz‘ulp )

P — P P — AP
al =aPl and AP = AP.

vipsevme) - Lhen there is
<* q and for each I? < n < m,

e Vm—1)

Proof. Set | = [P. Construct a and A as follows. For each | < n < m set a,, = a?
and A, = AP. For each m < n < w set a, = al and A, = Al. Set p* =

(f1,a,A). 0

Claim 2.8. Assume p € P is a condition and D is a dense open subset of P. Then
there is a Prikry extension p* <* p and I[P <n < w such that

YU, ... vn_1) € AP ; eD.

UIp ey Vn—1)
Proof. Set [ = [P. The proof is done in two stages. In stage I we prove that for
each | < n < w there is a Prikry extension p* <* p such that either (the good case)

V<Ul,...,l/n,1>614p*p* >ED

(ViyeoisVn—1

or (the bad case)

V<Vl7 RS Vn71> € Ap* Vq <* p?w,...,un_ﬁ q ¢ D.

In stage 1T we show that it is not possible to get the bad case for every [ < n < w.

Stage I. Fix | < n < w and let < be a well ordering of Lev,_;(p). We use
the notation 7, i to denote elements of Lev,,_;(p). E.g., 7 = (v,...,v,). We will
construct by induction the <*-decreasing sequence (p” | 7 € Lev,,_;(p)) so as to
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satisfy that if a condition ¢ <* plZl7> satisfies ¢ € D, then pl<7l7> € D. The induction
is carried out as follows.

Assume that (p” | ji < ) was constructed. Let p’ be a condition such that for
each ji < 7, p’ <* pf. If there is a Prikry extension q <* p’w) such that ¢ € D then
use 2.7 to set p” <* p’ to be a condition such that p’Zl7> <* q. Otherwise set p” = p/.

At the end of the induction let p* be a condition such that for each 7 €
Lev,_i(p*), p* <* p”. By removing a measure zero set from Lev,_;(p*) we get
the conclusion.

Stage II. Begin with a condition p € P and a dense open subset D. Set p; = p
and by induction construct p,+1 <* p,, using stage I. If we get that

v<Vla R Vn—1> S Apn+1 pn—i—l(ul,...,un,l) € Da
then we are done by setting p* = p,,+1. Otherwise we have that
V<Vl> L) Vn—1> S Apn+1 Vq g* pn—&-l(yl,...,yn,l) q ¢ D.

and the induction continues.

We claim that at some n < w the induction had to stop, which proves the claim.
Towards a contradiction assume that the induction did not stop. Thus we have a
<*-decreasing sequence of conditions (p,, | { < n < w) such that for each | < n < w,

v(”lv ey Vn—1> S lepn-H Vq S* pn+1<ul,...,un,1) q ¢ D.
Let p* be a condition such that for each | <n < w, p* <* p,,. Let ¢ € D be a con-
dition such that ¢ < p*. By 2.6 there is ¢* < ¢ such that ¢* <* p7 ) where

- <I/l,...,VT,,_1
Wiy ooy vp—1) € AP . Since D is open and ¢ € D, ¢* € D. By the construction
of p*, ¢" <" Pny1qu,....vn_1)- By the construction of p,1 this means that ¢* ¢ D.
Contradiction. O

The triple (P, <, <*) is said to be of Prikry type if for each condition p € P and
formula ¢ in the P-forcing language there is a Prikry extension p* <* p deciding o.
The Prikry property is immediately derived from the previous lemma:

Corollary 2.9. The forcing (P, <,<*) is of Prikry type.
As usual in this family of forcing notions, a special care should be given to x™.
Claim 2.10. The cardinal k™ is preserved in a P-generic extension.

Proof. Since & is of cofinality w we need to show that every sequence in k* of length
less than & is bounded. Thus assume A < k and p - “f : A — (k1)y”. Set | = [P,
We can assume that x; > A. We will exhibit a condition p* <* p forcing that f is
bounded in x*. For each ¢ < A set D = {g < p| 3 < rt qlF “f({) = €"}. Using
claim 2.8 and claim 2.2 construct by induction a <*-sequence (p; | ¢ < A) and a
sequence (m¢ < w | ¢ < A) satisfying po <* p and for each { < A,

V(i Vine) € AP 36 <Y Do,y IFAFO = €.
Thus for each ¢ < A,

(Ui, Vm,) € APY 3¢ < kT PAWi e ) IS “f(() =¢.
For each ¢ < A define the function F¢ : Lev,, i(px) — k1 so that

V<l/l, R I/m<> c AP> p/\<l/1,~~7l/mc) I+ “f(é) = F{(Vl; ey I/mc)”.
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Set p = sup{F¢(Vr, .- Vme) | C <A, (Vs Vme) € Levi —i(pa)}. By its defini-
tion, py IF “ran f C 7. Since the sup in the definition of p is being taken over a
set of size smaller than kT and s is regular, we get pu < k™. O

Recall that a family of sets Z is called a A-system if there is a set d such that for
each two different sets D1, Dy € Z in the family, D1 N Dy = d. The set d is called
the kernel of the A-system 2. Existence of A-systems is the basis for proving the
chain-condition property in many forcing notions. The current forcing notion also
needs a A-system argument in order to show it satisfies the x™-cc. However a
property somewhat stronger than just D1 N Ds = d is used. Thus a family & of sets
of ordinals is said to be a strong A-system if it is a A-system, and in addition, for
each two different sets D1, Dy € @, there are two ordinals a; € Dy and ag € Do
such that D1 N Dy = Dy Ny = Dy Nag. Now let {de € P+ (k1) | £ < kTT}
be a family of subsets of xTF. By following the proof of the A-lemma we can
see that the above family contains a strong A-system of size k¥+. It is worth
mentioning that, for example, the family {d¢ € £+ (k™) | ¢ < kTT} contains a
A-system but not necessarily a strong A-system, and this is the reason the higher
gap forcing notions get complicated: A rather complicated structure having the
strong A-system property is being used there.

Claim 2.11. The forcing P satisfies the k™1 -cc.

Proof. Let X = {p¢ | € < KT} CP be a set of ks conditions. For each £ < k™
and IP¢ <n < wset S§ = {ranv | v € AL}, For each & < k*7F, IP¢ < n < w, and
p €SS set pé € AL to be such that p = ran ps,.

Shrink X several times in succession, calling the shrunk set still X, so as to
satisfy the following:

(1) The set {dom fP¢ | ¢ < k*T} is a strong A-system with kernel d. For each
¢ < k1T set de € [dom fP<]=" to be a set disjoint from d satisfying dom fP¢ =
dUdg.

For each & < & < k1

(2) supd < mindg, < supdg, < mindg,.

(3) Pso = [P&1. Let | be the common value of the [P¢’s.

(4) For each [ <n < w, S§ = S§'. Let S,, be the common value of the S§’s.

(5) For each | < n < w, rana%® = rana$}.

(6) For each a € d, fPéo(a) = fPé (). (Thus fPé and fPé: are compatible in the

forcing P*).

)
)
)
)

Pick some & < & < k1. We claim that pg, and pg, are compatible. We will show
this by constructing the stronger conditions ¢; < pe, (i < 2), and then constructing
a condition r < qo, q1-

For each i < 2 construct the conditions ¢; < pg, as follows. Set a; = mind,.
Choose | < n* < w such that for each i < 2, a; € dom aff:’ and aiﬁi () < Hops k2
for some k < n* — 2. Now choose for each I < n < n*, uf{' such that ran /Lflo =

ran . Set ¢ =pg 6

Set f = f9* U f%. We will construct by induction the sequences a and A so that
(f,a, A) € P is a condition as follows.

By induction assume that for n* < n < w, a,_1 and A,,_1 have been constructed.
Let 7 = tp,, 41 (ranaf®) = tp,, ;1 (ranaf!) and z = ran(af | d) = ran(ad* | d).
The set {N N, p41 | N € ranal } witnesses that 4, p4o F “Jy C I, 41 ¥ 2
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T, tp, y1(y) = 77. Observe that € al'(a1). Thus by elementarity af(a;) =
Yy C A1 ¥ 2 T, tp, p41(y) = 77. Thus we can choose y € aj(ay) such
that y 2 & and tp,, ,,1(9) = 7. Let a, be the function from domaf’ Udomaf} to
y Uran(al!) satisfying a,, [ domai' = al', rana, | (doma® \ d) =y, and for each
a,f € (doma)\ d, if & < § then a,(a) < an(B). Choose a set A, € E,(a,) such
that for each i < 2, A, [ doma® C AZ.

When the construction of @ and A is completed set r = (f,a, A). It is not hard
to verify that r < qg, q1. O

Combining the above claims we get:

Theorem (M. Gitik [1]). Assume (K, | n < w) is an increasing sequence of car-

dinals such that for each n < w there is a (ky, k" "?) extender. Let k=, -, fin-

Then there is a cardinal preserving generic extension adding no new bounded subsets
to rk such that 2F = kT,

Proof. e The Prikry property 2.9 of (P, <, <*), together with the closure 2.2 of
(P, <*) yield that V and V[G] have the same bounded subset of x, and thus that
k is preserved. By the kT T-cc 2.11 all the cardinals above k1 are preserved, and
by 2.10, the cardinal k™ is also preserved. Thus all cardinals are preserved.
e On the one hand, the s "-cc together with [P| = x** imply 27 < ' in the
generic extension. On the other hand, 2.5 gives 2% > k™.
([
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