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Abstract. We show that Gitik’s short extender gap-2 forcing is of Prikry

type.

1. Introduction

In [5] a forcing notion blowing up the powerset of a cardinal κ carrying an
extender together with changing κ’s cofinality to ω in one step was introduced.
The size of the powerset in the generic extension was set to the size of the extender.
It was felt at the time that this is the optimal assumption. That is, if one begins
with a model for κ of cofinality ω with large powerset, then in the core model
one should find an extender on κ of the powerset size. Going this way [6] and [3]
assumed 2κ > λ and found, quite unexpectedly, two possibilities. One possibility
was indeed that in the core model the cardinal κ carries an extender of the size
2κ. The other possibility, however, was that in the core model the cardinal κ is a
singular cardinal of cofinality ω, and there is an increasing sequence of cardinals
κn with limit κ each carrying a rather short extender. In the sequence of papers
[1, 2, 3] Gitik showed that indeed this other possibility can be used to blow up the
powerset of κ.

Gitik presented his forcing notions in the TAU set theory seminar of the year
2007 from which the notes [7, 4] grew out. We thank the participants of the seminar
Eilon Belinski, Omer Ben-Naria, Assaf Ferber, Assaf Rinot, and Liad Tal. Of course
we thank Moti Gitik for the organization, presentation, and for being rather patient
with the enormous amount of questions he had to answer by phone, email, and in
person.

In this paper we reprove the following.

Theorem (M. Gitik [1]). Assume 〈κn | n < ω〉 is an increasing sequence of car-
dinals such that for each n < ω there is a 〈κn, κ+n+2

n 〉 extender. Let κ =
⋃
n<ω κn.

Then there is a cardinal preserving generic extension adding no new bounded subsets
to κ such that 2κ = κ++.

In case somehow it was not clear until now, we stress that the forcing notion
presented is due to Gitik. The new feature we present is that the forcing notion is
of Prikry type with the Prikry order being closed enough so it is useful. We present
all details, thus the paper is self contained assuming one knows forcing and large
cardinals theory. Our plan is to fit in the wider gap short extender forcing notions
into this framework hopefully gaining the Prikry property.
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2. Gap-2 forcing

Assume κ =
⋃
n<ω κn, where 〈κn | n < ω〉 is an increasing sequence of cardinals.

Furthermore, assume that for each n < ω there is an elementary embedding jn :
V → Mn such that Mn is transitive, crit(jn) = κn, Mn ⊇ Mκn

n , and jn(κn) ≥
κ+n+2
n . Let En be the 〈κn, κ+n+2

n 〉-extender derived from jn. Without loss of
generality assume that jn is the natural embedding from V to Ult(V,En) 'Mn.

We write Sλµ to denote the set {ξ < λ | cf ξ = µ}.

Definition 2.1. The following list of points leads to the definition of the forcing
notion 〈P,≤P〉 and its Prikry order ≤∗P. We begin with the definition of the universe
for measures, continue with structures and then get to the relevant measures.
• Assume d ∈ [Sκ

++

κ+ ]<κn . The set OBn(d) is composed of the order preserving
functions ν : d→ κn \ κn−1. (Consider κ−1 to be ∅).

• For the duration of the current section fix for each n < ω a cardinal χn < κ large
relative to κn. Assume k ≤ n < ω. Define the following structure.

Hn,k = 〈H(χ+k
n ),∈, En, A, ξ〉A∈Vκn+1, ξ<κ

+k
n
.

Instead of using χ+k
n in the above definition any sequence 〈χn,k | k < n〉 having

the property H(χn,k) ∈ H(χn,k+1) could have been used.
• An elementary submodel N ≺ Hn,k codes an ordinal α < κ+n+2

n if α = N ∩
κ+n+2
n , |N | = κ+n+1

n , and N ⊇ N<κn . We use N̊ to denote the ordinal N∩κ+n+2
n .

• A family of elementary submodels x codes an element of [κ+n+2
n ]<κn if:

(1) |x| < κn.
(2) For each N ∈ x there is k ≤ n such that N ≺Hn,k codes an ordinal < κ+n+2

n .
(3) For each N1, N2 ∈ x such that N1 6= N2, N̊1 6= N̊2.
(4) If N1, N2 ∈ x, N2 ≺Hn,k+1, and N̊1 < N̊2, then N1 ∩Hn,k ∈ N2.
We set x̊ = {N̊ | N ∈ x}.

• Assume d ∈ [Sκ
++

κ+ ]<κn and a : d → H(χ+ω
n ) is a function such that ran a codes

an element of [κ+n+2
n ]<κn .

– The function å : d→ κ+n+2
n is defined by å(α) = a(α) ∩ κ+n+2

n .
– The measure En(a) is defined on OBn(d) as follows:

∀X ⊆ OBn(d)
(
X ∈ En(a) ⇐⇒ {〈jn(α), å(α)〉 | α ∈ d} ∈ jn(X)

)
.

• Assume e ⊆ d ∈ [Sκ
++

κ+ ]≤κ and X ⊆ OBn(d). Then

X � e = {ν � e | ν ∈ X}.

For finite products define: If 〈dn | l ≤ n ≤ m〉 is ⊆-increasing, e ⊆
⋃
l≤n≤m dn,

and X ⊆
∏
l≤n≤m OBn(dn) then

X � e = {〈νl � e, . . . , νm � e〉 | 〈νl, . . . , νm〉 ∈ X}.
We define now the Cohen part P∗ of the forcing notion P. It will consists of κ initial
segments of Prikry sequences to be generated.
• A condition f is in the forcing notion P∗ if f : d→ <ωκ is a function such that:

(1) d ∈ [Sκ
++

κ+ ]≤κ.
(2) For each α ∈ d, f(α) = 〈fn1(α), . . . , fn2−1(α)〉 ∈

∏
n1≤n<n2

κn is an increas-
ing sequence, where n1 ≤ n2 < ω and n1 and n2 depend on α.

The forcing notion P∗ is equipped with the partial order f ≤∗P∗ g ⇐⇒ f ⊇ g.
(Thus 〈P∗,≤∗〉 is the Cohen forcing adding κ++ subsets to κ+).
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Finally we define the forcing notion P and its two orders ≤∗P and ≤P.

• A condition p = 〈f, ā, Ā〉 is in the forcing notion P if there is l < ω such that:
(1) f ∈ P∗.
(2) ā = 〈an : dn → H(χ+ω

n ) | l ≤ n < ω〉 is a sequence of functions such that:
(2.1)

⋃
l≤n<ω dn = dom f .

(2.2) 〈dn | l ≤ n < ω〉 is ⊆-increasing.
(2.3) For each l ≤ n < ω, |dn| < κn.

(3) (3.1) For each l ≤ n < ω, an codes an increasing sequence 〈̊an(α) | α ∈ dn〉
of ordinals in κ+n+2

n .
(3.2) Assume α ∈ dom f , and let l ≤ n∗ < ω be minimal such that α ∈

dn∗ . Furthermore, assume that for each n∗ ≤ n < ω, an(α) ≺ Hn,kn .
Then

⋃
n∗≤n<ω kn = ω, and the sequence 〈kn | n∗ ≤ n < ω〉 is non-

decreasing.
(4) Ā = 〈An | l ≤ n < ω〉 and for each l ≤ n < ω, An ∈ En(an).
We write lp, fp, āp, Āp, apn, Apn, and Levm(p), for l, f , ā, Ā, an, An, and∏
l≤n≤l+mAn, respectively.

• Let p, q ∈ P. The condition p is a Prikry extension of q (p ≤∗P q) if:
(1) fp ≤∗P∗ fq.
(2) lp = lq (we use l to denote the common value).
(3) For each l ≤ n < ω:

(3.1) apn ⊇ aqn.
(3.2) dom apn \ dom aqn ⊆ dom fp \ dom fq.
(3.3) Apn � dom aqn ⊆ Aqn.

Note that the Prikry order is quite closed as stated in claim 2.2.

• Assume f ∈ P∗, ν ∈ OBn(d), where d ∈ [dom f ]<κn . Define the condition
f〈ν〉 ∈ P∗ to be the function g ∈ P∗ with domain dom f satisfying for each
α ∈ dom g,

g(α) =

{
f(α)_〈ν(α)〉 α ∈ dom ν, ν(α) > max f(α),
f(α) Otherwise.

Assume 〈νl, . . . , νm−1〉 ∈
∏
l≤n<m OBn(dn) where dn ∈ [dom f ]<κn . Define the

condition f〈νl,...,νm−1〉 ∈ P∗ recursively as (f〈νl,...,νm−2〉)〈νm−1〉.
• Assume p ∈ P. By writing 〈νlp , . . . , νn−1〉 ∈ Āp we mean that 〈νlp , . . . , νn−1〉 ∈

Levn−lp−1(p).
• Assume p ∈ P and 〈νlp , . . . , νm−1〉 ∈ Āp. By āp〈νlp ,...,νm−1〉 and Āp〈νlp ,...,νm−1〉 we

mean the sequences 〈apn | m ≤ n < ω〉 and 〈Apn | m ≤ n < ω〉, respectively.
• Assume p ∈ P and 〈ν〉 ∈ Āp. Define the condition p〈ν〉 ∈ P to be 〈fp〈ν〉, ā

p
〈ν〉, Ā

p
〈ν〉〉.

• Assume p ∈ P and 〈νl, . . . , νn−1〉 ∈ Āp. Define recursively p〈νl,...,νn−1〉 ∈ P to be
the condition (p〈νl,...,νn−2〉)〈νn−1〉 ∈ P.

The natural way to define the forcing order would have been to extend a condition
p to a Prikry extension of p〈νl,...,νn−1〉. Alas, this definition collapses κ++. In order
to restrict the length of the anti-chains, we identify conditions with different a’s.
This is done according to the types of the a’s defined as follows.

• Assume k ≤ n < ω and x ∈ Hn,k. The 〈n, k〉-type of x is defined to be the
set of formulae with one free parameter holding in the structure Hn,k for the
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assignment x, i.e.,

tpn,k(x) = {pφ(−)q |Hn,k � φ(x)}.

We will be interested in the types of sets in [κ+n+2
n ]<κn . A type will be coded

by an ordinal. I.e., tpn,k(x) ∈ κ+k+1
n . Hence for k < n there are constants in the

language of the structure Hn,k+1 for the Hn,k-types.
• Assume p, q ∈ P. We say that p is an extension of q (p ≤P q) if there is
〈νlq , . . . , νlp−1〉 ∈ Āq, and a non-decreasing sequence 〈kn ≤ n | lp ≤ n < ω〉,
such that:
(1) fp ≤∗P∗ f

q
〈νlq ,...,νlp−1〉.

(2)
⋃
lp≤n<ω kn = ω.

(3) For each lp ≤ n < w:
(3.1) dom apn ⊇ dom aqn.
(3.2) dom apn \ dom aqn ⊆ dom fp \ dom fq.
(3.3) Apn � dom aqn ⊆ Aqn.
(3.4) tpn,kn(ran(̊apn � dom aqn)) = tpn,kn(ran åqn).

Let us specify two properties of the order ≤P which are not obvious at once.
It can happen that two conditions satisfy both p ≤P q and fp ≤∗P∗ fq but p �∗P q.

That is changing only the values of the an’s while keeping their types is a non-Prikry
extension. This allows the Prikry order to be closed.

Another fact is as follows. Suppose p = 〈f, ā, Ā〉, q = 〈f, b̄, Ā〉, and lp = lq = l.
Moreover, assume that tpn,kn(ran ån) = tpn,kn(ran b̊n) for each n∗ ≤ n < ω, where
l < n∗ < ω. Assume that for each l ≤ n < n∗, tpn,0(ran ån) 6= tpn,0(ran b̊n) while
En(an) = En(bn). According to the definition of the order ≤ we have both p � q
and q � p. The basic observation of the current work is that p  “q̌ ∈ G˜” and
q  “p̌ ∈ G˜”. That is, while the conditions p and q are incomparable, from the
forcing point of view they are equivalent. This is due to the following. Suppose
G ⊆ P is generic and p ∈ G. Since {p〈νl,...,νn∗−1〉 | 〈νl, . . . , νn∗−1〉 ∈ Ā} is a maximal
antichain below p, there is 〈νl, . . . , νn∗−1〉 ∈ Ā such that p〈νl,...,νn∗−1〉 ∈ G. By the
definition of the order ≤P we have p〈νl,...,νn∗−1〉 ≤ q〈νl,...,νn∗−1〉 ≤ q. Thus q ∈ G
and we proved that p  “q̌ ∈ G˜”. The same argument with p and q interchaged
will show that q  “p̌ ∈ G˜”.

We state the exact closure properties of the Prikry order.

Claim 2.2. (1) Assume 〈pξ | ξ < λ < κlp0 〉 is a ≤∗-decreasing sequence. Then
there is a condition p∗ such that for each ξ < λ, p∗ ≤∗ pξ.

(2) Assume 〈pξ | ξ < λ < κn∗〉 is a ≤∗-decreasing sequence, and for each ξ0 < ξ1 <

λ and lp ≤ n < n∗, apξ0n = a
pξ1
n and Apξ0n = A

pξ1
n . Then there is a condition p∗

such that for each ξ < λ, p∗ ≤∗ pξ.

The following claim shows that in the generic extension there is an ω-sequence
for each α ∈ Sκ++

κ+ . It is a bit stronger than what is actually needed since it also
shows that we can control the initial segments of κ-many sequences at once.

Claim 2.3. Assume p ∈ P is a condition and g ≤∗ fp. Then there is a Prikry
extension p∗ ≤∗ p such that fp

∗
= g.

Proof. Set l = lp. The proof is done is three stages. In stage I we show how to
extend fp to fp ∪ {〈α, g(α)〉} ensuring on the way that this can be done without
changing am and Am (lp ≤ m < n∗) for any l ≤ n∗ < ω. In stage II we show how
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to extend fp with less than κ-many ordinals. Finally, in stage III we show how
extend fp to an arbitrary g.

Stage I. Assume g \ fp = 〈α, g(α)〉. Set fp
∗

= g and fix some l ≤ n∗ < ω. The
construction of āp

∗
and Āp

∗
is done according to the whereabouts of α:

(1) For each β ∈ dom fp, α > β: The construction is by induction. Begin by
setting for each l ≤ n < n∗, ap

∗

n = apn and Ap
∗

n = Apn.
The inductive step is done as follows. Assume ap

∗

n−1 and Ap
∗

n−1, where n∗ ≤
n < ω, have been constructed. Choose an elementary submodel N ≺ Hn,n

coding an ordinal in κ+n+2
n such that for each β ∈ dom apn, apn(β)∩Hn,n−1 ∈ N .

Then set ap
∗

n (α) = N , and ap
∗

n � dom apn = apn. Now choose Ap
∗

n ∈ En(ap
∗

n ) such
that Ap

∗

n � dom apn ⊆ Apn.
(2) There is γ ∈ dom fp such that α < γ: Let γ ∈ dom fp be minimal such that

α < γ. Let n∗ ≤ m < ω be minimal such that max g(α) < κm, γ ∈ dom apm,
and apm(γ) ≺Hn,k+2. The construction of āp

∗
and Āp

∗
is by induction. Begin

by setting for each l ≤ n < m, ap
∗

n = apn and Ap
∗

n = Apn.
The inductive step is done as follows. Assume that ap

∗

n−1 and Ap
∗

n−1, where
m ≤ n < ω, have been constructed. Choose an elementary submodel N ≺
Hn,k+1 coding an ordinal in κ+n+2

n such that N ∈ apn(γ), and for each β ∈
dom apn ∩ γ, apn(β)∩Hn,k ∈ N . Then set ap

∗

n (α) = N , and ap
∗

n � apn = apn. Now
choose Ap

∗

n ∈ En(ap
∗

n ) such that Ap
∗

n � dom apn ⊆ Apn.
Stage II. Let 〈αξ | ξ < λ < κ〉 be an enumeration of dom g \ dom fp. Let

l ≤ n∗ < ω be minimal such that κn∗ > λ. Construct by induction, using stage I
and 2.2, the ≤∗-decreasing sequence of conditions 〈pξ | ξ ≤ λ〉 satisfying:
(1) p0 = p.
(2) For each ξ < λ, fpξ+1 = fpξ ∪ {〈αξ, g(αξ)〉}.
(3) For each ξ0 < ξ1 < λ and l ≤ n < n∗, apξ0n = a

pξ1
n and A

pξ0
n = A

pξ1
n .

We are done by setting p∗ = pλ.
Stage III. Let 〈αξ | ξ < κ〉 be an enumeration of dom g \ dom fp. For each

l ≤ n < ω let gn ⊆ g be a function such that |gn| < κn, {dom gn | l ≤ n < ω} is
a set of mutually disjoint sets, and g =

⋃
l≤n<ω gn. Construct by induction, using

stage II and claim 2.2, a ≤∗-decreasing sequence 〈pn | l < n ≤ ω〉 such that pl = p,
and for each l ≤ n < ω, fpn+1 = fpn ∪ gn. We are done by setting p∗ = pω. �

In view of claim 2.3 the following definition makes sense.

Definition 2.4. Assume G ⊂ P is generic. For each α ∈ Sκ++

κ+ set

Gα∗ =
⋃
{fp(α) | p ∈ G, α ∈ dom fp}.

Let Gα be a shift of Gα∗ satisfying Gα ∈
∏
n<ω κn.

It is immediate that 〈Gα | α ∈ Sκ++

κ+ 〉 is increasing, thus we have:

Corollary 2.5. (In V [G]) 2κ ≥ |(κ++)V |.

The following claim is the crux of the matter. It connects the forcing order≤ with
the Prikry order ≤∗. The best option would have been to have p ≤∗ q〈νlq ,...,νlp−1〉
if p ≤ q. This however fails in the current definition. We can resurrect it but loose
the closedness of the Prikry order. The following claim shows that we almost have
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the best option. Just instead of getting that p ≤∗ q〈νlq ,...,νlp−1〉, we have a stronger
condition p∗ ≤ p for which p∗ ≤∗ q〈νlq ,...,νlp∗ 〉.

Claim 2.6. Assume p, q ∈ P are conditions such that p ≤ q. Then there is a
stronger condition p∗ ≤ p and a sequence 〈νlq , . . . , νlp∗−1〉 ∈ Āq such that p∗ ≤∗
q〈νlq ,...,νlp∗−1〉.

Proof. Let 〈νlq , . . . , νlp−1〉 ∈ Āq and 〈kn ≤ n | lp ≤ n < ω〉 witness that p is
an extension of q. Let lp ≤ n∗ < ω be minimal such that kn > 0, and choose
〈µlp , . . . , µn∗−1〉 ∈ Āp. Observe that 〈µlp � dom fq, . . . , µn∗−1 � dom fq〉 ∈ Āq.

Construct ā and Ā by doing the following for each n∗ ≤ n < ω. Set An = Apn.
Set τ = tpn,kn−1(ran åpn). The set {N ∩Hn,kn−1 | N ∈ ran apn} witnesses

Hn,kn � ∃x ⊂Hn,kn−1

(
x̊ ⊇ ran(̊apn � dom aqn) ∧ tpn,kn−1(̊x) = τ

)
.

Since tpn,kn(ran(̊apn � dom aqn)) = tpn,kn(ran åqn),

Hn,kn � ∃x ⊂Hn,kn−1

(
x̊ ⊇ ran åqn ∧ tpn,kn−1(̊x) = τ

)
.

Now let x ⊆ Hn,kn−1 be a set satisfying x̊ ⊇ ran åqn and tpn,kn−1(̊x) = τ . Set
an to be the function with domain dom apn and ran an = x satisfying for each
α, β ∈ dom apn, if α < β then ån(α) < ån(β).

Set p∗ = 〈fp〈µlp ,...,µn∗−1〉
, ā, Ā〉. Then p∗ ≤ p and

p∗ ≤∗ q〈νlq ,...,νlp−1,µlp�dom fq,...,µn∗−1�dom fq〉.

�

The following technical lemma is used in stage I of the proof of 2.8.

Lemma 2.7. Assume p ∈ P is a condition and q ≤∗ p〈νlp ,...,νm−1〉. Then there is
a Prikry extension p∗ ≤∗ p such that p∗〈νlp ,...,νm−1〉 ≤

∗ q and for each lp ≤ n < m,
ap

∗

n = apn and Ap
∗

n = Apn.

Proof. Set l = lp. Construct ā and Ā as follows. For each l ≤ n < m set an = apn
and An = Apn. For each m ≤ n < ω set an = aqn and An = Aqn. Set p∗ =
〈fq, ā, Ā〉. �

Claim 2.8. Assume p ∈ P is a condition and D is a dense open subset of P. Then
there is a Prikry extension p∗ ≤∗ p and lp ≤ n < ω such that

∀〈νlp , . . . , νn−1〉 ∈ Āp
∗
p∗〈νlp ,...,νn−1〉 ∈ D.

Proof. Set l = lp. The proof is done in two stages. In stage I we prove that for
each l ≤ n < ω there is a Prikry extension p∗ ≤∗ p such that either (the good case)

∀〈νl, . . . , νn−1〉 ∈ Āp
∗
p∗〈νl,...,νn−1〉 ∈ D

or (the bad case)

∀〈νl, . . . , νn−1〉 ∈ Āp
∗
∀q ≤∗ p∗〈νl,...,νn−1〉 q /∈ D.

In stage II we show that it is not possible to get the bad case for every l ≤ n < ω.
Stage I. Fix l ≤ n < ω and let ≺ be a well ordering of Levn−l(p). We use

the notation ~ν, ~µ to denote elements of Levn−l(p). E.g., ~ν = 〈νl, . . . , νn〉. We will
construct by induction the ≤∗-decreasing sequence 〈p~ν | ~ν ∈ Levn−l(p)〉 so as to
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satisfy that if a condition q ≤∗ p~ν〈~ν〉 satisfies q ∈ D, then p~ν〈~ν〉 ∈ D. The induction
is carried out as follows.

Assume that 〈p~µ | ~µ ≺ ~ν〉 was constructed. Let p′ be a condition such that for
each ~µ ≺ ~ν, p′ ≤∗ p~µ. If there is a Prikry extension q ≤∗ p′〈~ν〉 such that q ∈ D then
use 2.7 to set p~ν ≤∗ p′ to be a condition such that p~ν〈~ν〉 ≤

∗ q. Otherwise set p~ν = p′.
At the end of the induction let p∗ be a condition such that for each ~ν ∈

Levn−l(p∗), p∗ ≤∗ p~ν . By removing a measure zero set from Levn−l(p∗) we get
the conclusion.

Stage II. Begin with a condition p ∈ P and a dense open subset D. Set pl = p
and by induction construct pn+1 ≤∗ pn using stage I. If we get that

∀〈νl, . . . , νn−1〉 ∈ Āpn+1 pn+1〈νl,...,νn−1〉 ∈ D,
then we are done by setting p∗ = pn+1. Otherwise we have that

∀〈νl, . . . , νn−1〉 ∈ Āpn+1 ∀q ≤∗ pn+1〈νl,...,νn−1〉 q /∈ D.
and the induction continues.

We claim that at some n < ω the induction had to stop, which proves the claim.
Towards a contradiction assume that the induction did not stop. Thus we have a
≤∗-decreasing sequence of conditions 〈pn | l ≤ n < ω〉 such that for each l ≤ n < ω,

∀〈νl, . . . , νn−1〉 ∈ Āpn+1 ∀q ≤∗ pn+1〈νl,...,νn−1〉 q /∈ D.
Let p∗ be a condition such that for each l ≤ n < ω, p∗ ≤∗ pn. Let q ∈ D be a con-
dition such that q ≤ p∗. By 2.6 there is q∗ ≤ q such that q∗ ≤∗ p∗〈νl,...,νn−1〉, where
〈νl, . . . , νn−1〉 ∈ Āp

∗
. Since D is open and q ∈ D, q∗ ∈ D. By the construction

of p∗, q∗ ≤∗ pn+1〈νl,...,νn−1〉. By the construction of pn+1 this means that q∗ /∈ D.
Contradiction. �

The triple 〈P,≤,≤∗〉 is said to be of Prikry type if for each condition p ∈ P and
formula σ in the P-forcing language there is a Prikry extension p∗ ≤∗ p deciding σ.
The Prikry property is immediately derived from the previous lemma:

Corollary 2.9. The forcing 〈P,≤,≤∗〉 is of Prikry type.

As usual in this family of forcing notions, a special care should be given to κ+.

Claim 2.10. The cardinal κ+ is preserved in a P-generic extension.

Proof. Since κ is of cofinality ω we need to show that every sequence in κ+ of length
less than κ is bounded. Thus assume λ < κ and p  “ḟ : λ̌ → (κ+)V ”. Set l = lp.
We can assume that κl > λ. We will exhibit a condition p∗ ≤∗ p forcing that ḟ is
bounded in κ+. For each ζ < λ set Dζ = {q ≤ p | ∃ξ < κ+ q  “ḟ(ζ̌) = ξ̌”}. Using
claim 2.8 and claim 2.2 construct by induction a ≤∗-sequence 〈pζ | ζ ≤ λ〉 and a
sequence 〈mζ < ω | ζ < λ〉 satisfying p0 ≤∗ p and for each ζ < λ,

∀〈νl, . . . , νmζ 〉 ∈ Āpζ ∃ξ < κ+ pζ〈νl,...,νmζ 〉  “ḟ(ζ̌) = ξ̌”.

Thus for each ζ < λ,

∀〈νl, . . . , νmζ 〉 ∈ Āpλ ∃ξ < κ+ pλ〈νl,...,νmζ 〉  “ḟ(ζ̌) = ξ̌”.

For each ζ < λ define the function Fζ : Levmζ−l(pλ)→ κ+ so that

∀〈νl, . . . , νmζ 〉 ∈ Āpλ pλ〈νl,...,νmζ 〉  “ḟ(ζ̌) = F̌ζ(νl, . . . , νmζ )”.
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Set µ = sup{Fζ(νl, . . . , νmζ ) | ζ < λ, 〈νl, . . . , νmζ 〉 ∈ Levmζ−l(pλ)}. By its defini-
tion, pλ  “ ran ḟ ⊆ µ̌”. Since the sup in the definition of µ is being taken over a
set of size smaller than κ+ and κ+ is regular, we get µ < κ+. �

Recall that a family of sets D is called a ∆-system if there is a set d such that for
each two different sets D1, D2 ∈ D in the family, D1 ∩D2 = d. The set d is called
the kernel of the ∆-system D . Existence of ∆-systems is the basis for proving the
chain-condition property in many forcing notions. The current forcing notion also
needs a ∆-system argument in order to show it satisfies the κ++-cc. However a
property somewhat stronger than just D1∩D2 = d is used. Thus a family D of sets
of ordinals is said to be a strong ∆-system if it is a ∆-system, and in addition, for
each two different sets D1, D2 ∈ D , there are two ordinals α1 ∈ D1 and α2 ∈ D2

such that D1 ∩ D2 = D1 ∩ α1 = D2 ∩ α2. Now let {dξ ∈ Pκ+(κ++) | ξ < κ++}
be a family of subsets of κ++. By following the proof of the ∆-lemma we can
see that the above family contains a strong ∆-system of size κ++. It is worth
mentioning that, for example, the family {dξ ∈ Pκ+(κ+3) | ξ < κ++} contains a
∆-system but not necessarily a strong ∆-system, and this is the reason the higher
gap forcing notions get complicated: A rather complicated structure having the
strong ∆-system property is being used there.

Claim 2.11. The forcing P satisfies the κ++-cc.

Proof. Let X = {pξ | ξ < κ++} ⊆ P be a set of κ++ conditions. For each ξ < κ++

and lpξ ≤ n < ω set Sξn = {ran ν | ν ∈ Apξn }. For each ξ < κ++, lpξ ≤ n < ω, and
µ ∈ Sξn set µξn ∈ A

pξ
n to be such that µ = ranµξn.

Shrink X several times in succession, calling the shrunk set still X, so as to
satisfy the following:
(1) The set {dom fpξ | ξ < κ++} is a strong ∆-system with kernel d. For each

ξ < κ++ set dξ ∈ [dom fpξ ]≤κ to be a set disjoint from d satisfying dom fpξ =
d ∪ dξ.

For each ξ0 < ξ1 < κ++:
(2) sup d < min dξ0 < sup dξ0 < min dξ1 .
(3) lpξ0 = lpξ1 . Let l be the common value of the lpξ ’s.
(4) For each l ≤ n < ω, Sξ0n = Sξ1n . Let Sn be the common value of the Sξn’s.
(5) For each l ≤ n < ω, ran aξ0n = ran aξ1n .
(6) For each α ∈ d, fpξ0 (α) = fpξ1 (α). (Thus fpξ0 and fpξ1 are compatible in the

forcing P∗).
Pick some ξ0 < ξ1 < κ++. We claim that pξ0 and pξ1 are compatible. We will show
this by constructing the stronger conditions qi ≤ pξi (i < 2), and then constructing
a condition r ≤ q0, q1.

For each i < 2 construct the conditions qi ≤ pξi as follows. Set αi = min dξi .
Choose l ≤ n∗ < ω such that for each i < 2, αi ∈ dom a

pξi
n∗ and a

pξi
n∗ (αi) ≺Hn∗,k+2

for some k ≤ n∗ − 2. Now choose for each l ≤ n < n∗, µξin such that ranµξ0n =
ranµξ1n . Set qi = p

ξi〈µ
ξi
l ,...,µ

ξi
n∗−1〉

.

Set f = fq1 ∪ fq2 . We will construct by induction the sequences ā and Ā so that
〈f, ā, Ā〉 ∈ P is a condition as follows.

By induction assume that for n∗ ≤ n < ω, an−1 and An−1 have been constructed.
Let τ = tpn,k+1(ran åq0n ) = tpn,k+1(ran åq1n ) and x = ran(aq0n � d) = ran(aq1n � d).
The set {N ∩Hn,k+1 | N ∈ ran aq0n } witnesses that Hn,k+2 � “∃y ⊂ Hn,k+1 ẙ ⊇
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x̊, tpn,k+1(ẙ) = τ”. Observe that x̊ ∈ aq1n (α1). Thus by elementarity aq1n (α1) �
“∃y ⊂ Hn,k+1 ẙ ⊇ x̊, tpn,k+1(ẙ) = τ”. Thus we can choose y ∈ a1(α1) such
that ẙ ⊇ x̊ and tpn,k+1(ẙ) = τ . Let an be the function from dom aq0n ∪ dom aq1n to
y ∪ ran(aq1n ) satisfying an � dom aq1n = aq1n , ran an � (dom aq0n \ d) = y, and for each
α, β ∈ (dom aq0n ) \ d, if α < β then ån(α) < ån(β). Choose a set An ∈ En(an) such
that for each i < 2, An � dom aqin ⊆ Aqin .

When the construction of ā and Ā is completed set r = 〈f, ā, Ā〉. It is not hard
to verify that r ≤ q0, q1. �

Combining the above claims we get:

Theorem (M. Gitik [1]). Assume 〈κn | n < ω〉 is an increasing sequence of car-
dinals such that for each n < ω there is a 〈κn, κ+n+2

n 〉 extender. Let κ =
⋃
n<ω κn.

Then there is a cardinal preserving generic extension adding no new bounded subsets
to κ such that 2κ = κ++.

Proof. • The Prikry property 2.9 of 〈P,≤,≤∗〉, together with the closure 2.2 of
〈P,≤∗〉 yield that V and V [G] have the same bounded subset of κ, and thus that
κ is preserved. By the κ++-cc 2.11 all the cardinals above κ+ are preserved, and
by 2.10, the cardinal κ+ is also preserved. Thus all cardinals are preserved.
• On the one hand, the κ++-cc together with |P| = κ++ imply 2κ ≤ κ++ in the

generic extension. On the other hand, 2.5 gives 2κ ≥ κ++.
�
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